ビジネス活動をしていると、何かしらの指標を眺めることが多々あります。例えば、売上や受注件数、問い合せ件数、サイトのPV(ページビュー)数などなど。多くの人は、子ども時代から、何かしらの指標を眺めて過ごしているでしょう。例えば、受験生であれば模擬テストの点数、受験生でなくても成績表の評価なども、ある種の指標です。指標の動きが想定通りであれば問題ありません。想定通りでない場合、多くの人は異常だと判断することでしょう。今回は、「あなたはどのようなときに指標が異常(問題が起こっている)と判断していますか?」というお話しをします。
【目次】
1.どういう状態を正とするのか?
2.過去の傾向からの乖離
3.予測からの乖離(差)
4.崩れた前提をデータで探る
【この連載の前回:データ分析講座(その244)ビジネスで活きる指標とは?へのリンク】
1.どういう状態を正とするのか?
繰り返しになりますが、指標の動きが想定通りであれば問題ありません。想定通りでない場合、多くの人は異常だと判断することでしょう。と言うことは、どのような指標の状態を正(想定通り)とするのかを定義しなければ、異常(問題が起こっている)かどうかを判断することができません。
例えば、売上で考えると……
- 売上が予定した予算を達成していない
- ほぼ横ばいで推移していた売上が急激に悪化した
……などなど。
前者は、予定(未来)と実際のギャップ(差が大きい)場合に異常と見なしています。後者は、過去の傾向から大きくずれた場合に異常と見なしています。
予定(未来)には、人の「思い」によるものと、数理モデルではじき出した「予測」によるものがあります。「予測」によるものの方が、異常の要因をデータから探りやすいです。人の「思い」にも、根拠の薄い思いと、しっかりとした根拠に裏付けられた思いによるものがあります。「思い」によるものでも、当然ですが「根拠に裏付けられた思い」の方が、異常の要因をデータから探りやすいです。
2.過去の傾向からの乖離
過去の傾向から大きくずれた状態を異常と見なす場合、どのようにして異常かどうかを判断するのか?一番簡単なのが、過去のデータ(時系列データ)の推移から探るやり方です。伝統的に、管理図というものを用います。
管理図のデータをヒストグラムで表現すると、以下のようになります。
このように、管理図やヒストグラムを使って異常検知をするのが、最も簡単です。ここで1つ気を付けるべきポイントがあります。管理図で見ていく指標は、横にランダムに振動しながら推移する指標です。上昇傾向や下降傾向、周期性のあるデータは、何かしらの処理を実施し、横にランダムに振動しながら推移する指標にします。
では、どうやってそのような指標を作るの? という疑問を持たれた方もいると思いますが、ここでは説明を割愛します。ヒントを少しお話しすると、上手く時系列モデルを作りその残差を指標とすると、横にランダムに振動しながら推移する指標になります。
3.予測からの乖離(差)
予定(未来)と実際のギャップ(差が大きい)を異常と見なす場合、どのようにして異常かどうかを判断するのか?予定(未来)が、数理モデルではじき出した「予測」による場合、過去データから構築した時系列モデル(予測のための数理モデル)を用いてはじき出した予測値と実際の数値を比較し探ります。
予測値と実際の値の差が大きければ異常と見なせるでしょう。統計学系の時系列モデル(予測のための数理モデル)であれば、予測区間を求めることが多くの場合できますので、例えばこの区間外であれば異常と見なしてもいいでしょう。ちなみに、この時系列モデル(予測のための数理モデル)は、「過去の傾向からの乖離」を探る場合にも当然使えます。と言うことは、この時系列モデ...