AIって何だろうと考えたとき、感覚的に思いつくことの1つとして「何かを教えてくれるコンピュータ上の何か」といのもあるのではないでしょうか?何かを教えてくれるぐらいですから、そこそこ性格のいいAIです。そんなもの作れるか! っとなりますが、AIっぽいデータ活用の中で、もっとも手軽に実現できそうなのが異常検知です。「これ、変ですよ!」と教えてくれるからです。
実は、異常検知は昔からあるデータサイエンスの技術です。ということで今回は「もっとも手軽なAIである異常検知」というお話しをします。
【目次】 1.仲間外れを探す 2.過去・現在・未来 3.教師ありと教師なし 4.どう使い分けるのか?
【この連載の前回:(その270)階層時系列データと予測モデル構築へのリンク】
◆【特集】 連載記事紹介 :連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!
◆データ分析講座の注目記事紹介
1.仲間外れを探す
異常検知って何だろう? と考えたとき、最初に思い浮かんだのが「仲間外れを探す」というものです。異常検知とは、他のデータとは違うデータを探し、そして教えてくるものでしょう。データは、単に数値データだけでなく、画像データや音声データ、自然言語データなども含みます。
2.過去・現在・未来
異常検知の用途は幅広く、過去・現在・未来で活躍します。
例えば、データ整備中に過去データの外れ値などを探す作業はよくあることです。検知後、その理由を探り、どう対処するのかを決めデータ整備をします。
例えば、目の前にあるデータが正常か異常か検知する使い方もよくあることです。売上や受注件数、PV数などのモニタリングしている指標が異常かどうかを探ったり、工場などで外観検査をする際に画像データを利用し人手ではなく機械(コンピュータ)で外観検査をしたりします。
例えば、未来の異常を予測することもよくあります。顧客の離反という異常を予測したり、機械の故障という異常を予測したりし、未来の異常に対しあらかじめ対処できるようにする使い方もあります。
活躍の場面の多い異常検知ですが、異常検知をするためには、何かしら数理モデルのようなものを構築する必要があります。
3.教師ありと教師なし
機械学習の中に、教師あり学習と教師なし学習というものがあります。
異常検知も、教師あり学習によるものと、教師なし学習によるものがあります。教師あり学習による異常検知では、異常検知モデルを学習するとき、正常 or 異常のラベルが付いたデータを利用します。ということは、教師なし学習による異常検知モデルを学習するとき、そのデータには正常or異常のラベルが付いていないということです。
4.どう使い分けるのか?
一例として、データの取りはじめなど、データ量の問題で、教師なし学習による異常検知をすることがあります。データがそれなりに蓄積された段階で、教師あり学習による異常検知に切り替える、というものです。
通常、異常の発生頻度が小さいため、データ量が少ないと、異常のラベルの付いたデータが非常に少ないという問題があります。そして、多くの場合、精度は教師...
あり学習による異常検知の方が高いです。もう1つの例として、両方を併用し、教師あり学習による異常検知で既知のパターンの異常を検知し、教師なし学習による異常検知で未知のパターンの異常を検知する、という使い方もあります。
教師あり学習の場合、正常or異常のラベルが付いたデータで学習するということは、異常のラベルのデータと似たようなパターンを異常と見なす、ということです。未知のパターンの異常を見逃す可能性があります。教師なし学習の場合、他のデータと違うデータを探すので、未知のパターンの異常を検知する可能性があります。
(その1)
(その2)
(その3)
(その4)
(その5)
(その6)
(その7)
(その8)
(その9)
(その10)
(その11)
(その12)
(その13)
(その14)
(その15)
(その16)
(その17)
(その18)
(その19)
(その20)
(その21)
(その22)
(その23)
(その24)
(その25)
(その26)
(その27)
(その28)
(その29)
(その30)
(その31)
(その32)
(その33)
(その34)
(その35)
(その36)
(その37)
(その38)
(その39)
(その40)
(その41)
(その42)
(その43)
(その44)
(その45)
(その46)
(その47)
(その48)
(その49)
(その50)
(その51)
(その52)
(その53)
(その54)
(その55)
(その56)
(その57)
(その58)
(その59)
(その60)
(その61)
(その62)
(その63)
(その64)
(その65)
(その66)
(その67)
(その68)
(その69)
(その70)
(その71)
(その72)
(その73)
(その74)
(その75)
(その76)
(その77)
(その78)
(その79)
(その80)
(その80)
(その81)
(その82)
(その83)
(その84)
(その85)
(その86)
(その87)
(その88)
(その89)
(その90)
(その91)
(その92)
(その93)
(その94)
(その95)
(その96)
(その97)
(その98)
(その99)
(その100)
(その101)
(その102)
(その103)
(その104)
(その105)
(その106)
(その107)
(その108)
(その109)
(その110)
(その111)
(その112)
(その113)
(その114)
(その115)
(その116)
(その117)
(その118)
(その119)
(その120)
(その121)
(その122)
(その123)
(その124)
(その125)
(その126)
(その127)
(その128)
(その129)
(その130)
(その131)
(その132)
(その133)
(その134)
(その135)
(その136)
(その137)
(その138)
(その139)
(その140)
(その141)
(その142)
(その143)
(その144)
(その145)
(その146)
(その147)
(その148)
(その149)
(その150)
(その151)
(その152)
(その153)
(その154)
(その155)
(その156)
(その157)
(その158)
(その159)
(その160)
(その161)
(その162)
(その163)
(その164)
(その165)
(その166)
(その167)
(その168)
(その169)
(その170)
(その171)
(その172)
(その173)
(その174)
(その175)
(その176)
(その177)
(その178)
(その179)
(その180)
(その181)
(その182)
(その183)
(その184)
(その185)
(その186)
(その187)
(その188)
(その189)
(その190)
(その191)
(その192)
(その193)
(その194)
(その195)
(その196)
(その197)
(その198)
(その199)
(その200)
(その201)
(その202)
(その203)
(その204)
(その205)
(その206)
(その207)
(その208)
(その209)
(その210)
(その211)
(その212)
(その213)
(その214)
(その215)
(その216)
(その217)
(その218)
(その219)
(その220)
(その221)
(その222)
(その223)
(その224)
(その225)
(その226)
(その227)
(その228)
(その229)
(その230)
(その231)
(その232)
(その233)
(その234)
(その235)
(その236)
(その237)
(その238)
(その239)
(その240)
(その241)
(その242)
(その243)
(その244)
(その245)
(その246)
(その247)
(その248)
(その249)
(その250)
(その251)
(その252)
(その253)
(その254)
(その255)
(その256)
(その257)
(その258)
(その259)
(その260)
(その261)
(その262)
(その263)
(その264)
(その265)
(その266)
(その267)
(その268)
(その269)
(その270)
(その271)
(その272)
(その273)
(その274)
(その275)
(その276)
(その277)
(その278)
(その279)
(その280)
(その281)
(その282)
(その283)
(その284)
(その285)
(その286)
(その287)
(その288)
(その289)
(その290)
(その291)
(その292)
(その293)
(その294)
(その295)
(その296)
(その297)
(その298)
(その299)