時系列データに対するクロスバリデーション法、データ分析講座(その307)

 

 

ビジネスの世界では、売上などの時系列データを使い予測モデルを構築し、近未来を予測しながらビジネス活動する人や組織があります。ただ、予測モデルを構築するときに、どのモデル(アルゴリズム)がいいのか?どの説明変数Xの組み合わせがいいのか?どのハイパーパラメータの値の組み合わせがいいのか?は、モデル構築前に通常はわかりません。そのため、色々な組み合わせパターンで試す必要があります。試すとき、予測モデルを構築するために利用するデータセットを「訓練データ」と「検証データ」します。

色々なパターン(モデルと説明変数Xとハイパーパラメータの値などの組み合わせ)で「訓練データ」で予測モデルを学習し求め「検証データ」で検証し、より良いパターンを探索します。ここで、データセットを「訓練データ」と「検証データ」に分割しチューニングする場合、どう分割するのかという問題があります。そのやり方の1つが、クロスバリデーション法です。今回は「時系列データに対するクロスバリデーション法」というお話しをします。

【目次】

    【この連載の前回:高精度な予測モデルが「使えるモデル」とは限らない、データ分析講座(その306)へのリンク】

    ◆データ分析講座の注目記事紹介

    1. クロスバリデーション法とは?

    クロスバリデーション法とは、データセットを複数に分割し「訓練データ」による予測モデルの学習と「検証データ」による評価を、複数回実施する方法です。例えば、データセットをランダムに10個に分けます。このとき「訓練データ」と「検証データ」のデータセットの組み合わせを10セット作ります。

     

    それぞれのセットで予測モデルを学習し評価することで、個々の評価結果を出します。最終的にその評価結果を取りまとめ総合評価結果とします。

     

    2. クロスバリデーション法のイメージ

    もう少し分かりやすく説明します。1セット目です。10分割したデータの1つを「検証データ」とします。それ以外の9個のデータを「訓練データ」とします。この「訓練データ」で予測モデルを学習し「検証データ」を使い評価します。 

    2セット目です。10分割したデータの中から1セット目と異なる「検証データ」を1つ選択し「検証データ」とします。それ以外の9個のデータを「訓練データ」とします。この「訓練データ」で予測モデルを学習し「検証データ」を使い評価します。

    このような感じで、3セット目以降も同様に「訓練データ」による予測モデルの学習と「検証データ」による評価を実施します。最終的に、10個の評価結果が手に入ります。多くの場合、評価結果の平均を取り総合評価とします。もちろん、平均ではなく最大値や最小値などを求め「最悪のケース」を総合評価とすることもあります。 

     

    3. そのまま時系列データに適用したとき起こる問題

    今説明したクロスバリデーション法は、時間軸を考慮した予測モデルのチューニングをするとき問題が起きます。

     

    「訓練データ」は「検証データ」よりも時間的に過去のデータである必要があります。ランダムに分割すると「過去のデータで予測モデルを学習し、未来の目的変数yを予測する」という前提を満たさない可能性が高いからです。そのため、ある時点で2つにデータセットを分割し、時間的に前のデータを「訓練データ」時間的に後のデータを「検証データ」とします。

     

    4. 時系列データに対するクロスバリデーション法

    クロスバリデーション法は複数の「訓練データ」と「検証データ」のセットを準備し、それぞれのセットで予測モデルを学習し評価し、最終的にその評価結果を取りまとめ総合評価結果とします。時系列データの場合には、次のように「訓練データ」と「検証データ」を分割する時点を複数設け、その時点ごとに「訓練データ」と「検証データ」のセットを作ります。

    訓練データの期間を伸ばしていくエクスパディング型と、訓練データの期間を常に一定と...

    するローリング型の2通りの方法があります。実務で予測モデルを構築し活用するとき、どちらの使い方に近いかで考えればいいと思います。
    1.  エクステパディング型:実務で予測モデルを構築するとき、手に入る過去データをできるだけ使うケース
    2.  ローリング型:実務で予測モデルを構築するとき、ある一定の期間の過去データを使うケース(もしくは、古いデータを定期的に破棄するケース)

     

    【ものづくり セミナーサーチ】 セミナー紹介:国内最大級のセミナー掲載数 〈ものづくりセミナーサーチ〉 はこちら!

     

    ↓ 続きを読むには・・・

    新規会員登録


    この記事の著者