◆ データサイエンス、小さく始め大きく波及
データサイエンス・ 機械学習・ AIと、夢を大きく持つことはいいことですが、足下無視で進めることはできません。足下無視の結果、体力のある企業がすることの多くが、IT投資と人財育成や登用です。モノとヒトでどうにかなるかといえば、実はどうにもならないのです。適切なテーマ設定とアプローチが非常に重要になってきます。どのテーマが花開くのか分からないので、それを見越したアプローチが必要になります。今回は「データサイエンスを大きく波及させる5つのポイント」というお話しをします。
1、できるだけコンパクトに
データサイエンスを実践する上で上手く進みやすいのは、できるだけコンパクトに始めることです。例えば、自部署+関連部署が1つ2つだけ、といったコンパクトさです。小さく始めることのメリットは、軌道修正が簡単、失敗の影響も小さい、何度でもチャレンジできる…などです。そして、関わった人に自信と実績を、早い段階で与えてくれます。何よりも、小さくても実績は実績です。社内政治力のある人が、エライ人や関連部署などの理解や協力を得るのに、この実績が使え、大きく波及する手助けになります。
2、3つの軸
小さく始める時、大きく以下の3つの軸で考え波及させるとよいでしょう。
- 軸1(テーマの大きさ):テーマ設定を小さくする(例:ある限定されたテーマ)
- 軸2(影響範囲):影響範囲を小さくする(例:数人レベル)
- 軸3(データサイエンス力):簡単なデータサイエンス技術だけで始める(例:昔からある簡単な分析手法)
最初からホームランを狙うのも良くありません。狙ってもいいですが成功率は低くなりますし、大きな成果を生むかどうかは、やっていなくては分かりません。野球で例えるなら、ホームランを打つパワーヒッターではなく、こつこつヒットを打つアベレージヒッターのイメージです。地道にヒットを重ねていれば、その内のいくつかはホームランになります。小さく始めたデータサイエンスのテーマのポテンシャルが見えてきます。小さく始め、大きく波及させるテーマの取捨選択することが可能となります。
3、5つのポイント
小さく始める時のポイントを紹介します。迷った際、以下の5つの視点で考えてみてください。
- ポイント1:汎用よりも限定
- ポイント2:変革よりも改善
- ポイント3:高尚よりも経験
- ポイント4:予測よりも解釈
- ポイント5:発見よりも確認
(1) ポイント1:汎用よりも限定
テーマ設定を小さくしたり(例:ある限定されたテーマ)、影響範囲を小さくしたり(例:数人レベル)と、汎用性が低く用途が限られているデータサイエンスにチャレンジするということです。このとき、汎用性が高まる(大きく波及できる)ことを念頭に置きます。
(2) ポイント2:変革よりも改善
テーマ設定をする時、現状否定から始まる変革よりも、現状肯定による改善の方を選ぶ、ということです。人が関与するテーマほど、改善の道を選びます。理由は人の理解が得られやすく、ポイントが絞られ、成果が出やすいからです。改善で成果を出した後、この成果を変革の旗印にすれば十分です。
(3) ポイント3:高尚よりも経験
最新の分析手法や難解な数理モデルなどを無理して使うよりも、簡単にすぐ成果の出やすいデータサイエンスに取り組み、経験を積みましょう、ということです。成果が大きく簡単なテーマを差し置いて、不思議なぐらい「成果が大きいけど難しいテーマ」に取り組む人が多い印象があります。
(4) ポイント4:予測よりも解釈
予...
測モデルを構築し未来を語らせる前に、現状をしっかり押さえるデータ分析をしましょう。現状をしっかり押さえるデータ分析とは、過去から現在までの傾向をデータで解釈しましょう、ということです。未来予測に比べ、現状解釈の方がはるかに簡単ですし、今まで何となく感じていたことをデータで裏付けする部分が大きく、理解を得られやすいわけです。
(5) ポイント5:発見よりも確認
現状解釈のためのデータ分析をする時、思い描けない発見よりも知っていることを確認するためのデータ分析をしましょう、ということです。社内の「何となくこうだろう」をデータで裏付け、数字でズバッと示していくイメージです。例えば「営業の訪問回数が多いほど受注率が高まる」という現場の「何となくこうだろう」に対しデータを使いその傾向をグラフ化し、さらに最適な訪問回数は8回だ、ということを示すというアプローチです。