1. コンデンサレンズ(集束レンズ)
コンデンサレンズ(集束レンズ)はプローブ電流とプローブ径を調整するレンズです。そしてコンデンサレンズの次には対物絞りが設置されます。コンデンサレンズを強く(励磁を強く)すると電子線が広がるため、対物絞りを通る電子線(プローブ電流)は少なくなります。
プローブ電流が少なくなるので、試料に照射される電子線のプローブ径も小さくなります。反対にコンデンサレンズを弱く(励磁を弱く)すると電子線が絞れるため、対物絞りを通るプローブ電流が多くなります。プローブ電流が多くなるので、試料に照射される電子線のプローブ径も大きくなります。この模式図を下図に示します。コンデンサレンズを強くすればプローブ径が小さくなりますが、無制限に小さくはならずに対物レンズの性能による限界を迎えます。
図.コンデンサーレンズと絞りの関係
現実的にはプローブ電流(SEMの機種によってはスポットサイズと呼ぶときもあります)を小さくしすぎると、SEM像のノイズが大きくなり、走査速度(スキャン速度)を遅くしても観察困難になります。なお、熱電子銃よりもFEの方が高い倍率でもノイズが発生しずらく、10万倍などの高倍率でSEM像を観察できます。高い分解能を得るためには電子線のプローブ径を小さくしますが、そのためにはFEや高性能な対物レンズが必要になります。
2. 対物レンズ
対物レンズは集束レンズ、対物絞りを通過したプローブ電流を、試料に向けて焦点を合わせて照射します。いわゆる「フォーカス合わせ」はこの対物レンズの焦点を合わせることです。対物レンズによって最終的なプローブ電流、プローブ径が決まるため、重要なレンズになります。
対物レンズにはいくつか種類がありますが、最も汎用的に使用されるのは汎用型対物レンズ(アウトレンズ方式)です。汎用型対物レンズの模式図を下図に示します。SEMの試料室の上側を見たときに円錐形のものが見えます。それが汎用型対物レンズです。レンズ磁場がレンズの中にあり、そこから試料に向けて電子線を下ろします。
試料サイズにあまり制限されないのが利点ですが、レンズ磁場と試料が離れているため、高分解能には不向きです。汎用型対物レンズとは別に、インレンズ方式と呼ばれる対物レンズもあります。これはレンズ磁場の中に試料をセットできるので高分解能な観察ができます。しかし、試料サイズが制限されたり、試料自身の磁化などの欠点もあり...