【オンデマンド配信】機械学習/AIによる特許調査の高度化で実践するスマート特許戦略
~特許・知財実務へのAI導入と具体的活用テクニック~
特許調査・検索やマッチングの基礎からはじまり、関連特許文献の自動抽出、
特許分類の自動付与、特許クレームマッピングなど、機械学習/AIを利用した
特許調査の高度化について、実務導入を見据えて実践的な注意点を交えながら解説!
■商用AI特許調査ツールやオープンソースを活用した豊富な事例、
さらには、要約や要点・特許明細書の自動生成など、
近年注目の生成AI活用の可能性などにも触れていきます。
進展する機械学習/AI技術を特許実務で活用して更なる効率化を図り、
よりスマートな特許戦略を目指すための1講です。
日時
2024年11月28日(木)23:59まで申込み受付中/【収録日:2024年6月18日(火) 】※映像時間:4時間12分
視聴期間:申込日から10営業日後まで(期間中は何度でも視聴可)
セミナー趣旨
本セミナーでは、機械学習やAI技術を効果的に活用してこれらの業務を高度化するための
実践的なテクニックと事例を紹介します。
自然言語処理による関連特許文献の自動抽出、特許分類の自動付与、特許クレームのマッピングなど、
様々な機械学習アプローチを特許調査に適用する方法を解説します。
さらに、要約自動生成や特許明細書読解・作成支援、質問応答システムなど、
最新の生成AIモデルを活用した実用事例も取り上げます。また、実務での導入を見据えて、
適切なデータ前処理、学習モデルの構築と評価、セキュリティ対策、人的監視とフィードバックといった
実践的な注意点についても詳しく説明します。機械学習やAIを効果的に取り入れることで、
特許調査業務を飛躍的に効率化し、質の高い特許ポートフォリオを構築する戦略的な指針が得られます。
スマートな特許戦略を実現するための具体的な方策を習得できるセミナーとなっています。
セミナープログラム
1.1 講師自己紹介
1.2 アジア特許情報研究会紹介
2.特許調査と検索の基礎
2.1 調査対象と調査範囲の特定・明確化
2.2 マッチングと適合
2.3 特許調査における再現率(網羅性)と適合率(効率)
2.4 先行技術調査と侵害防止調査の検索モデルの違い
2.5 「完全一致」⇔「最良一致」検索モデルの比較
2.6 特許調査システムとその評価方法
2.7 従来の人手作業による課題と限界
3.機械学習/AIによる特許調査の高度化
3.1 人工知能(AI:Artificial Intelligence)とは
3.2 AI、機械学習、深層学習について
3.3 データサイエンスベースの特許調査
3.4 AIの使用と情報要求
3.5 自然言語処理技術の活用
3.6 関連特許文献の自動抽出
3.7 特許分類の自動付与
3.8 特許クレームマッピング
4.商用AI特許調査ツールの活用事例
4.1 AI特許調査ツールへの要求性能
4.2 特許庁におけるAI活用動向
4.3 PatentfieldのAIセマンティック検索
4.4 PatentfieldのAI分類予測
4.5 Patentfieldの生成系AIを用いた読解支援機能
4.6 PatentSQUAREのAI検索・AI分類
4.7 Amplified.aiのAI検索
4.8 THE調査力AI(Deskbee5)のSDI調査事例
4.9 Summariaの読解支援AIアシスタント機能
5.生成系AIの概要と特許調査における可能性
5.1 生成系AIの概要
5.2 OpenAIのChatGPT4 モデル:GPT-4Turbo,GPT-4,GPT-3.5
5.3 GoogleのGemini モデル:Ultra,Pro,Nano
5.4 AnthropicのClaude3 モデル:Opus,Sonnet,Haiku
5.5 要約や要点の自動生成
5.6 特許明細書の査読支援
5.7 特許明細書の自動作成支援
5.8 質問応答やクエリ生成
5.9 AI特許調査ツールと生成系AIの連携
6.実践的なAI活用と注意点
6.1 AI活用特許調査システムへの過剰な期待
6.2 特許調査への機械学習適応時の留意点
6.3 人とAIの役割分担
6.4 機械学習/AIの原理的な限界
7.オープンソースを用いた機械学習の特許調査への応用
7.1 特許調査のためのオープンソース(OSS)の基礎
7.2 特許調査における「OSSツール」と「商用ツール」の相互補完的使用
7.3 機械学習概要(分類、回帰、クラスタリング、次元圧縮)
7.4 単語・文書のクラスタリングによる動向調査への応用
7.5 文書ベクトルの次元圧縮による特許公報の俯瞰可視化
7.6 文書分類との組み合わせによるパテントマップの自動作成
8.特許実務へのAI利用の現状のまとめと将来展望
8.1 特許庁(JPO)における人工知能(AI)技術の活用動向
8.2 特許調査分野におけるAI技術の活用動向
8.3 国産大規模言語モデルの開発動向
8.4 知財DXにおけるAIの効果を引き出すための3要素
【付録】 自分でできる特許情報解析ツール紹介
1.キーワード抽出関係
1.1 word2vec,doc2vecによる単語・文書の類似度計算と類似単語・文書抽出
1.2 termextractによる専門用語(キーワード)自動抽出
1.3 生成系AIによる専門用語(キーワード)自動抽出
1.4 Cytoscapeによる文脈語のネットワーク分析
セミナー講師
情報科学技術協会、人工知能学会、データサイエンティスト協会
各会員アジア特許情報研究会/元花王(株) 知的財産部 技術情報戦略G 安藤 俊幸 氏
【略歴】
1985年現花王株式会社入社、研究開発に従事
1999年研究所の特許調査担当(新規プロジェクト)
2011年よりアジア特許情報研究会所属
2020年 特許情報普及活動功労者表彰 日本特許情報機構理事長賞「技術研究功労者」受賞
2021年4月より研究開発部門 研究戦略・企画部。
【専門】
知財情報解析、機械学習、テキストマイニング、分析化学 情報科学技術協会、人工知能学会、データサイエンティスト協会 各会員
セミナー受講料
※お申込みと同時にS&T会員登録をさせていただきます(E-mail案内登録とは異なります)。
55,000円( E-mail案内登録価格52,250円 )
E-Mail案内登録なら、2名同時申込みで1名分無料
2名で 55,000円 (2名ともE-mail案内登録必須/1名あたり定価半額27,500円)
【1名分無料適用条件】
※2名様ともE-mail案内登録が必須です。
※同一法人内(グループ会社でも可)による2名同時申込みのみ適用いたします。
※3名様以上のお申込みの場合、1名あたり定価半額で追加受講できます。
※請求書(PDFデータ)は、代表者にE-mailで送信いたします。
※請求書および領収証は1名様ごとに発行可能です。
(申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。)
※他の割引は併用できません。
テレワーク応援キャンペーン(1名受講)【オンライン配信セミナー受講限定】
1名申込みの場合:受講料41,800円 ( E-Mail案内登録価格 39,820円 )
※1名様でオンライン配信セミナーを受講する場合、上記特別価格になります。
※他の割引は併用できません。
受講、配布資料などについて
オンデマンド配信の受講方法・視聴環境確認
- 録画セミナーの動画をお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
- 申込み後すぐに視聴可能です。S&T会員マイページ(無料)にログインいただき、ご視聴ください。
- 視聴期間内にご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
- セミナーに関する質問に限り、後日に講師にメールで質問可能です。
(テキストに講師の連絡先が掲載されている場合のみ) - 以下の視聴環境および視聴テストを事前にご確認いただいたうえで、お申込みください。
セキュリティの設定や、動作環境によってはご視聴いただけない場合がございます。
≫ 視聴テスト【ストリーミング(HLS)を確認】 ≫ 視聴環境
配布資料
- PDFテキスト(印刷可)
- 講師メールアドレスの掲載:有
その他注意事項
※オンライン配信セミナーの録音・撮影、複製は固くお断りいたします。
※講師の所属などは、収録当時のものをご案内しております