2種類の時系列データとは、 データ分析講座(その305)

投稿日

2種類の時系列データとは、 データ分析講座(その305)

 

時系列データといっても色々な形のものがあります。よく見かけるのが次の2種類です。

  1. 縦持ち時系列データ(時間軸が縦方向)
  2. 横持ち時系列データ(時間軸が横方向)

 

基本となるのが「縦持ち時系列データ」です。ビジネスの現場でよく見かけるのが「横持ち時系列データ」です。「縦持ち時系列データ」と「横持ち時系列データ」は、多くは相互に変換可能です。今回は「2種類の時系列データ」というお話しします。

【目次】

    【この連載の前回:ビジネス時系列データでよくある7つの活用事例 データ分析講座(その304)へのリンク】

    ◆データ分析講座の注目記事紹介

     

    1. 縦持ち時系列データ(時間軸が縦方向)

    「縦持ち時系列データ」とは、ここまで例として登場した時系列データで、時間変数が1つ、指標変数が1つ以上あります。もちろん、時間変数や指標変数以外の変数があっても構いません。次の例は、時間変数が「年月」(月単位)、指標変数が「販売金額」(全体の販売金額の合計)で構成された「縦持ち時系列データ」です。

    2種類の時系列データとは、 データ分析講座(その305)

     

    ビジネスの現場では、全体の販売金額だけでなく、商品や顧客、エリアなどに分けた販売金額にも関心を持つことでしょう。このような場合、例えば次のように「商品別の変数」を設け時系列データを作ったりします。

    2種類の時系列データとは、 データ分析講座(その305)

     

    このような時系列データは、ぱっと見では分かりやすいのですが、商品の種類が多いと、変数の数が非常に多くなるのが難点です。では、顧客別の場合はどうでしょうか。

     

    2. 層別変数

    商品別と同じように「顧客別の変数」を設けるという方法もあります。ただ、通常は非常に変数の数が非常に多くなります。顧客数が10万人であれば、10万変数になります。避けたいところです。このような場合、顧客の数や商品の数、エリアの数だけ新しい変数を設けるのではなく、それぞれを1つの変数(例:顧客ID、商品コード、エリアNo)で表現し、縦に長いデータセットを準備するのがいいでしょう。ここでは、このような変数を「層別変数」と呼ぶことにします。

    2種類の時系列データとは、 データ分析講座(その305)

     

    3. 基本のデータセット

    この非常に縦に長い「縦持ち時系列データ」が、基本のデータセットになります。このデータセットは集計や分析などを実施するとき非常に扱い易いです。必要に応じて、このデータセットの一部を切り出したり集計したりし、新たな「縦持ち時系列データ」を作り利用することができるからです。

     

    さらに状況に応じて、この非常に縦に長い「縦持ち時系列データ」から、この後説明する「横持ち時系列データ」や別の記事で説明する「時系列特徴量付きテーブルデータ」を作り、活用することができます。

     

    4. 横持ち時系列データ(時間軸が横方向)

    「横持ち時系列データ」とは、変数で時間を表現したデータ...

    2種類の時系列データとは、 データ分析講座(その305)

     

    時系列データといっても色々な形のものがあります。よく見かけるのが次の2種類です。

    1. 縦持ち時系列データ(時間軸が縦方向)
    2. 横持ち時系列データ(時間軸が横方向)

     

    基本となるのが「縦持ち時系列データ」です。ビジネスの現場でよく見かけるのが「横持ち時系列データ」です。「縦持ち時系列データ」と「横持ち時系列データ」は、多くは相互に変換可能です。今回は「2種類の時系列データ」というお話しします。

    【目次】

      【この連載の前回:ビジネス時系列データでよくある7つの活用事例 データ分析講座(その304)へのリンク】

      ◆データ分析講座の注目記事紹介

       

      1. 縦持ち時系列データ(時間軸が縦方向)

      「縦持ち時系列データ」とは、ここまで例として登場した時系列データで、時間変数が1つ、指標変数が1つ以上あります。もちろん、時間変数や指標変数以外の変数があっても構いません。次の例は、時間変数が「年月」(月単位)、指標変数が「販売金額」(全体の販売金額の合計)で構成された「縦持ち時系列データ」です。

      2種類の時系列データとは、 データ分析講座(その305)

       

      ビジネスの現場では、全体の販売金額だけでなく、商品や顧客、エリアなどに分けた販売金額にも関心を持つことでしょう。このような場合、例えば次のように「商品別の変数」を設け時系列データを作ったりします。

      2種類の時系列データとは、 データ分析講座(その305)

       

      このような時系列データは、ぱっと見では分かりやすいのですが、商品の種類が多いと、変数の数が非常に多くなるのが難点です。では、顧客別の場合はどうでしょうか。

       

      2. 層別変数

      商品別と同じように「顧客別の変数」を設けるという方法もあります。ただ、通常は非常に変数の数が非常に多くなります。顧客数が10万人であれば、10万変数になります。避けたいところです。このような場合、顧客の数や商品の数、エリアの数だけ新しい変数を設けるのではなく、それぞれを1つの変数(例:顧客ID、商品コード、エリアNo)で表現し、縦に長いデータセットを準備するのがいいでしょう。ここでは、このような変数を「層別変数」と呼ぶことにします。

      2種類の時系列データとは、 データ分析講座(その305)

       

      3. 基本のデータセット

      この非常に縦に長い「縦持ち時系列データ」が、基本のデータセットになります。このデータセットは集計や分析などを実施するとき非常に扱い易いです。必要に応じて、このデータセットの一部を切り出したり集計したりし、新たな「縦持ち時系列データ」を作り利用することができるからです。

       

      さらに状況に応じて、この非常に縦に長い「縦持ち時系列データ」から、この後説明する「横持ち時系列データ」や別の記事で説明する「時系列特徴量付きテーブルデータ」を作り、活用することができます。

       

      4. 横持ち時系列データ(時間軸が横方向)

      「横持ち時系列データ」とは、変数で時間を表現したデータセットです。例えば、次のように「2021年1月売上の変数」「2021年2月売上の変数」・・・といったものです。

      2種類の時系列データとは、 データ分析講座(その305)

       

      厳密には違いますが「横持ち時系列データ」は、ちょうど「縦持ち時系列データ」を転置(行と列を入れ替える)したかのようなデータセットになります。「横持ち時系列データ」の方が「縦持ち時系列データ」よりも分かりやすいと感じる方も多いことでしょう。そのためか、ビジネスの現場では「横持ち時系列データ」の方をよく見る気がします。

       

      そこで「縦持ち時系列データ」を作った方がいいのか、それとも「横持ち時系列データ」を作った方がいいのか悩むことがあります。しかし、先ほどもお話ししましたが、基本となるのは「縦持ち時系列データ」です。時系列データを利用した集計や分析などを実施するとき、最初にすべきは、非常に縦に長い「縦持ち時系列データ」を作ることです

       

      【ものづくり セミナーサーチ】 セミナー紹介:国内最大級のセミナー掲載数 〈ものづくりセミナーサーチ〉 はこちら!

       

         続きを読むには・・・


      この記事の著者

      高橋 威知郎

      データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

      データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


      「情報マネジメント一般」の他のキーワード解説記事

      もっと見る
      予測分析とは、予測分析の利点:データ分析講座(その317)

        【記事要約】 「どうなっているの」に応える、振り返りのための分析を超えて、先を見通した予測分析(Predictive Analyti...

        【記事要約】 「どうなっているの」に応える、振り返りのための分析を超えて、先を見通した予測分析(Predictive Analyti...


      ステークホルダーアップデートとは データ分析講座(その273)

        データサイエンス系プロジェクトを成功裏に納めるための人やチームの連携、チームがどのように連携していくのかに焦点を当てたとき重要になるの...

        データサイエンス系プロジェクトを成功裏に納めるための人やチームの連携、チームがどのように連携していくのかに焦点を当てたとき重要になるの...


      なぜ「解釈可能ML(機械学習)」が必要なのか? 主な手法と事例のご紹介(その1):データ分析講座(その356)

      【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! ▼さらに幅広く学ぶなら!「分野別のカリキュラ...

      【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! ▼さらに幅広く学ぶなら!「分野別のカリキュラ...


      「情報マネジメント一般」の活用事例

      もっと見る
      ‐情報収集で配慮すべき事項(第3回)‐  製品・技術開発力強化策の事例(その11)

       前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...

       前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...


      デジタルデータの保存とは

              今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...

              今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...


      ソフトウェア特許とは(その1)

       色々と定義はありますが、ソフトウェア特許とは、よく言うビジネスモデル特許であり、情報システムの特許です。言葉に差はあると思いますが、我々実務家は、ソフト...

       色々と定義はありますが、ソフトウェア特許とは、よく言うビジネスモデル特許であり、情報システムの特許です。言葉に差はあると思いますが、我々実務家は、ソフト...