多重度因子、かたより因子:金属材料基礎講座(その135)

投稿日

多重度因子、かたより因子:金属材料基礎講座(その135)

【目次】

    1. 多重度因子

    回折が例えば(100)で起こる時、同じ面間隔を持つ(010)、(001)などの面も同様に回折を起こします。

     

    この時、(100)、(010)、(001)は異なるミラー指数ですが、同じ回折を起こすため、回折強度はこれら3つの等価な面から起こる回折強度の合計となります。

     

    このように回折を起こすミラー指数のうち、等価な面のミラー指数の数を多重度因子として表します。例えば、立方晶の{100}の多重度因子は(100)、(010)、(001)、(-100)、(0-10)、(00-1)の6個です。また{111}の場合(111)、(-111)、(1-11)、(11-1)、(-1-11)、(-11-1)、(1-1-1)、(-1-1-1)の8個となり、{100}よりも回折を起こす面が多くなります。

     

    立方晶の多重度因子を下表に示します。面指数が複雑になるほど(等価な面が多いほど)多重度因子は多くなる傾向があります。

    表.立方晶の多重度因子

    多重度因子、かたより因子:金属材料基礎講座(その135)

     

    2. かたより因子

    X線は電磁波であり、ターゲット内で電子を急減速することによって発生します。

     

    そのため電子とX線は相互作用があると言えます。電子にX線を入射すると散乱が起こりますが、その強さは散乱角によって異なります。これをかたより因子(偏光因子)といいます。

     

    かたより因子は入射ビームの強度を基準にして散乱ビームの強度を与えます。これを表すと式(1)になります。cosで表されるように0°と180°(入射ビームの前方または後方)で最大になり、入射ビームの垂直方向は最小となります。

    多重度因子、かたより因子:金属材料基礎講座(その135)

     

    次回に続きます。

    関連解説記事:マランゴニ対流~宇宙でもきれいに混ざらない合金の不思議 

    ◆...

    多重度因子、かたより因子:金属材料基礎講座(その135)

    【目次】

      1. 多重度因子

      回折が例えば(100)で起こる時、同じ面間隔を持つ(010)、(001)などの面も同様に回折を起こします。

       

      この時、(100)、(010)、(001)は異なるミラー指数ですが、同じ回折を起こすため、回折強度はこれら3つの等価な面から起こる回折強度の合計となります。

       

      このように回折を起こすミラー指数のうち、等価な面のミラー指数の数を多重度因子として表します。例えば、立方晶の{100}の多重度因子は(100)、(010)、(001)、(-100)、(0-10)、(00-1)の6個です。また{111}の場合(111)、(-111)、(1-11)、(11-1)、(-1-11)、(-11-1)、(1-1-1)、(-1-1-1)の8個となり、{100}よりも回折を起こす面が多くなります。

       

      立方晶の多重度因子を下表に示します。面指数が複雑になるほど(等価な面が多いほど)多重度因子は多くなる傾向があります。

      表.立方晶の多重度因子

      多重度因子、かたより因子:金属材料基礎講座(その135)

       

      2. かたより因子

      X線は電磁波であり、ターゲット内で電子を急減速することによって発生します。

       

      そのため電子とX線は相互作用があると言えます。電子にX線を入射すると散乱が起こりますが、その強さは散乱角によって異なります。これをかたより因子(偏光因子)といいます。

       

      かたより因子は入射ビームの強度を基準にして散乱ビームの強度を与えます。これを表すと式(1)になります。cosで表されるように0°と180°(入射ビームの前方または後方)で最大になり、入射ビームの垂直方向は最小となります。

      多重度因子、かたより因子:金属材料基礎講座(その135)

       

      次回に続きます。

      関連解説記事:マランゴニ対流~宇宙でもきれいに混ざらない合金の不思議 

      関連解説記事:金属材料基礎講座 【連載記事紹介】

       

      連載記事紹介:ものづくりドットコムの人気連載記事をまとめたページはこちら!

       

      【ものづくり セミナーサーチ】 セミナー紹介:国内最大級のセミナー掲載数 〈ものづくりセミナーサーチ〉 はこちら!

       

         続きを読むには・・・


      この記事の著者

      福﨑 昌宏

      金属組織の分析屋 金属材料の疲労破壊や腐食など不具合を解決します。

      金属組織の分析屋 金属材料の疲労破壊や腐食など不具合を解決します。


      「金属・無機材料技術」の他のキーワード解説記事

      もっと見る
      パーティングラインとは

        プラスチック製品のよい成形パートナーに巡り合えたとしても、品質に対するお互いの認識がずれたまま金型製作まで進めていくと、生産への移行が...

        プラスチック製品のよい成形パートナーに巡り合えたとしても、品質に対するお互いの認識がずれたまま金型製作まで進めていくと、生産への移行が...


      転位とすべり運動 金属材料基礎講座(その6)

        ◆ 転位とすべり運動 金属材料の塑性変形はすべり面上をその上の金属原子面がすべり方向に動くことによって起こります。 しかし、現実的にあ...

        ◆ 転位とすべり運動 金属材料の塑性変形はすべり面上をその上の金属原子面がすべり方向に動くことによって起こります。 しかし、現実的にあ...


      めっきや塗装の前処理:金属材料基礎講座(その79)

        ◆ めっきや塗料の密着性を高めるには  めっき(メッキ)や塗料の密着性は、下地金属の表面状態や洗浄が非常に重要です。めっきや塗装がど...

        ◆ めっきや塗料の密着性を高めるには  めっき(メッキ)や塗料の密着性は、下地金属の表面状態や洗浄が非常に重要です。めっきや塗装がど...


      「金属・無機材料技術」の活用事例

      もっと見る
      金代替めっき接点の開発事例 (コネクター用貴金属めっき)

       私は約20年前に自動車用コネクターメーカーで、接点材料の研究開発を担当していました。当時の接点は錫めっきが主流でした。一方、ECU(エンジンコントロール...

       私は約20年前に自動車用コネクターメーカーで、接点材料の研究開発を担当していました。当時の接点は錫めっきが主流でした。一方、ECU(エンジンコントロール...


      ゾルゲル法による反射防止コートの開発と生産

       15年前に勤務していた自動車用部品の製造会社で、ゾルゲル法による反射防止コートを樹脂基板上に製造する業務の設計責任者をしていました。ゾルゲル法というのは...

       15年前に勤務していた自動車用部品の製造会社で、ゾルゲル法による反射防止コートを樹脂基板上に製造する業務の設計責任者をしていました。ゾルゲル法というのは...