以下の類似セミナーへのお申込みをご検討ください。
貴重なデータを最大限生かすための技術を紹介します!
セミナー修了後、受講者のみご覧いただける期間限定のアーカイブ配信を予定しております。
セミナー趣旨
現在の機械学習ではビッグデータと呼ばれる大量のデータを用いた学習を前提とすることが多い。しかし現実には、データの取得に金銭的・時間的コストがかかり、少数のデータしか得られないというケースも多く、単純に機械学習を適用しても満足のいく精度が出ないことがある。本セミナーでは、データが少ない場合に人間の知識やシミュレーションを援用したり、逆に機械学習の結果から知識を抽出したり、さらには機械学習のために効率的なデータ取得を工夫したりといった、データ解析のための戦略について事例を交えながら紹介する。
受講対象・レベル
・製造業などで少数データを製品設計などにうまく活用したいと思われている方
・機械学習の結果の解釈や評価法に興味がある方
習得できる知識
・人間の知識やシミュレーションを機械学習と組み合わせる技術
・機械学習のための効率的なデータの採取法
セミナープログラム
1.機械学習の概要
1-1 ビッグデータとディープデータ
1-2 次元の呪いと汎化能力
1-3 データ解析の基本手順
2.少数・高次元データの学習のための技術
2-1 スパースモデリングと正則化
2-2 圧縮センシングによる高解像度撮像
2-3 シミュレーションデータを活用したスパースモデリング
3.人間の知識をモデル化するための技術
3-1 ベイジアンネットを使ったモデル化法
3-2 ベイズ推論のための計算アルゴリズム
3-3 データ同化と状態空間モデルによる時系列モデリング
4.結果の評価・可視化・説明
4-1 機械学習結果の評価法
4-2 信頼度付き機械学習
4-3 ディープラーニングの結果の解釈と説明
5.データ不足を補ういろいろな技術
5-1 異常検知のための技術
5-2 半教師あり学習とクラウドソーシング
5-3 転移学習とマルチタスク学習
5-4 能動学習とベイズ最適化によるデータ取得法
機械学習,Deep Learning,データ,少量,AI,WEBセミナー,LIVE
セミナー講師
国立研究開発法人産業技術総合研究所 人間情報研究部門
脳数理研究グループ 上級主任研究員 博士(工学) 赤穂 昭太郎 氏
セミナー受講料
55,000円(税込、資料付)
■ セミナー主催者からの会員登録をしていただいた場合、1名で申込の場合49,500円、
2名同時申込の場合計55,000円(2人目無料:1名あたり27,500円)で受講できます。
(セミナーのお申し込みと同時に会員登録をさせていただきますので、
今回の受講料から会員価格を適用いたします。)
※ 会員登録とは
ご登録いただきますと、セミナーや書籍などの商品をご案内させていただきます。
すべて無料で年会費・更新料・登録費は一切かかりません。
メールまたは郵送でのご案内となります。
郵送での案内をご希望の方は、備考欄に【郵送案内希望】とご記入ください。
受講について
Zoomを使ったWEB配信セミナー受講の手順
- Zoomを使用されたことがない方は、こちらからミーティング用Zoomクライアントをダウンロードしてください。ダウンロードできない方はブラウザ版でも受講可能です。
- セミナー前日までに必ず動作確認をお願いします。
- 開催日直前にWEBセミナーへの招待メールをお送りいたします。当日のセミナー開始10分前までに招待メールに記載されている視聴用URLよりWEB配信セミナーにご参加ください。
- セミナー資料は開催前日までにPDFにてお送りいたします。
- 無断転載、二次利用や講義の録音、録画などの行為を固く禁じます。
※セミナーに申し込むにはものづくりドットコム会員登録が必要です
開催日時
10:30 ~
受講料
55,000円(税込)/人
※本文中に提示された主催者の割引は申込後に適用されます
※銀行振込
開催場所
全国
主催者
キーワード
機械学習・ディープラーニング AI(人工知能) 情報技術
※セミナーに申し込むにはものづくりドットコム会員登録が必要です
開催日時
10:30 ~
受講料
55,000円(税込)/人
※本文中に提示された主催者の割引は申込後に適用されます
※銀行振込
開催場所
全国
主催者
キーワード
機械学習・ディープラーニング AI(人工知能) 情報技術関連教材
もっと見る関連記事
もっと見る-
ニューラルネットワークとは?仕組みと種類、活用事例等をご紹介!
【目次】 ニューラルネットワークは、人工知能(AI)の中でも特に注目されている技術の一つです。人間の脳の働きを模倣したこの仕組みは、... -
生成AIの能力比較:生成AI、工場でどこまで使えるのか(その3)
近い将来、対話型AIが現行の検索エンジンにとって代わる可能性が指摘されていますが、今回は、連載解説(その3)生成AIの能力比較。を解説... -
生成AIの回答を検証する:生成AI、工場でどこまで使えるのか(その2)
近い将来、対話型AIが現行の検索エンジンにとって代わる可能性が指摘されていますが、今回は、連載解説(その2)生成AIの回答を検証するを... -
プロンプトエンジニアリング:生成AI、工場でどこまで使えるのか(その1)
近い将来、対話型AIが検索エンジンにとって代わる可能性が指摘されていますが、今回は、生成AIの活用方法をいろいろと試す「生成AIは、工...