説明可能AI(XAI:explainable AI)の作り方とAIの業務への導入方法

~機械学習の説明性向上・精度向上の方法と失敗しないAI導入のコツ~

【項目】※クリックするとその項目に飛ぶことができます

    セミナープログラム

    1 人工知能と機械学習
     1.1 人工知能とは何か?〜定義・考え方の推移など〜
     1.2 機械学習概論〜説明/事例に基づく学習など〜

    2 深層学習(ディープラーニング)の現状と課題
     2.1 ニューラルネットワーク概論〜NNの原理と学習の本質〜
     2.2 深層学習の基礎と最近の手法〜深層学習の考え方・長所・短所〜
     2.3 最近のAIの課題と説明できるAI:XAI〜現状のAIの課題と解決策〜

    3 ブラックボックス系機械学習のXAI
     3.1 学習済みの深層回路の可視化〜Grad-CAM・LIMEなど〜
     3.2 特徴空間の自動構築と可視化〜AE・CAE・VAE・UMAPなどによる次元圧縮〜
     3.3 可視化を前提とした深層学習〜GCM・判断根拠の提示〜
     3.4 深層回路の構造単純化・最適化法〜進化計算法・勾配降下による方法〜
     3.5 転移学習と浸透学習〜知識の転用による学習〜

    4 ホワイトボックス系機械学習のXAI
     4.1 特徴量の最適化による精度向上〜SVMなどの特徴量の最適化〜
     4.2 処理過程が説明できる処理の自動構築〜処理ユニットの組合せ最適化〜
     4.3 決定木などの処理の言葉による説明〜ルール集合による説明〜
     4.4 小規模かつ高性能な回路の自動構築〜セル型回路の利用など〜

    5 AIの業務への導入方法
     5.1 AI導入時の注意点〜課題と解決策〜
     5.2 AI人材の育成方法〜どの方法がベストか?〜

    6 まとめ・AIよろず相談室
     〜質疑応答とフリーディスカッション〜

    付録1:代表的な機械学習法
    付録2:進化計算法の原理と特徴
    付録3:横浜国大・長尾研のご紹介

    セミナー講師

    長尾智晴(ながおともはる) 氏
    横浜国立大学 大学院環境情報研究院 YNU人工知能研究拠点長 / 教授(工学博士)

     <経歴、等>
     東京工業大学大学院出身.東京工業大学工学部助手・助教授を経て,2001年より現職.経産省NEDO「共進化AIプロジェクト」採択課題研究代表者,横浜国立大学発ベンチャー 株式会社マシンインテリジェンス取締役CTOを兼務.
     <研究>
     知能情報学/進化計算法/機械学習/感性情報処理/知的画像処理/医工連携工学など.
     <学会>
      情報処理学会,電子情報通信学会,人工知能学会,進化計算学会,IEEEなどに所属して各学会で活動中.

    セミナー受講料

    お1人様受講の場合 53,900円[税込]/1名
    1口でお申込の場合 66,000円[税込]/1口(3名まで受講可能)

    受講申込ページで2~3名を同時に申し込んだ場合、自動的に1口申し込みと致します。


     

    受講料

    53,900円(税込)/人

    ※セミナーに申し込むにはものづくりドットコム会員登録が必要です

    開催日時


    10:30

    受講料

    53,900円(税込)/人

    ※本文中に提示された主催者の割引は申込後に適用されます

    ※銀行振込

    開催場所

    全国

    主催者

    キーワード

    AI(人工知能)   機械学習・ディープラーニング   ソフトウェア開発

    ※セミナーに申し込むにはものづくりドットコム会員登録が必要です

    開催日時


    10:30

    受講料

    53,900円(税込)/人

    ※本文中に提示された主催者の割引は申込後に適用されます

    ※銀行振込

    開催場所

    全国

    主催者

    キーワード

    AI(人工知能)   機械学習・ディープラーニング   ソフトウェア開発

    関連記事

    もっと見る