改善してる?~『 誤差の悲劇 』

投稿日

 saikoro1統計学を学ぶ利点の一つは「誤差」に惑わされなくなる点だと思います。同じ条件で行ったとしても同じ結果が出ない事は数多くあります。所謂ばらつきであり偶発的誤差が出ているからです。
 
 例えばサイコロを300振って、1が60回出ました。これは1が出やすいサイコロだと言えるでしょうか。1~6までの各目が均等に出れば確率は1/6です。300回振れば、50回1の目が出れば1/6となります。しかし実際は均等に振っていてもばらつきが生じます。
 
 上の例のように60回1の目が出ていてもばらつきの範囲内と言えるでしょうか。この様なケースには多々遭遇するのでは無いかと思います。歩留り改善対策を実施した結果、先月より0.3%上昇しました。果たしてこれは改善したと断言して良いのでしょうか。断言は出来ないけど悪化してないので継続してみましょうか、となりそうです。 逆に0.3%のダウンなら・・・効果なさそうなので止めましょう、となるかもしれません。
 
 これが1%アップなら『効果ありました』と自信を持って言えるのか・・・。今回のようなケースはカイ二乗検定を用いて有意差と言えるのか、誤差程度なのかのを判定をする事が出来ます。
 
 ある会社の先月の製造歩留まりが、96.7%でした。歩留まりを改善する為ある対策を実施した所、歩留まりは97.0%になりました。数値上は0.3%上がっていますが果たして改善したと言っても良いでしょうか(図1)
 
                gosa89    
図1.製造歩留まりの推移
 
 有意水準1%でカイ二乗検定を行うと73%の確率で、この程度の差異は生じ得ると言う判定結果となります。 つまり統計的には改善されたとは見なされない結果となります。まさに誤差範囲での変動を効果があると喜ぶ『 悲劇 』が生じるのです。統計的手法を用いれば、数値の変化に一喜一憂する前に、果たしてそれが意味がある変化なのかどうか、判断することが可能になります。
 
 上の例は歩留まりですが、約1000人採用した場合の一年後離職者数として考えれば、採用の 評価でも同じように活用することが出来ます。決して製造業向けの方法では無く、あらゆる業種・職種で用いることが出来ます。ビジネスシーンでは、アクションに対する効果有無の比較は当たり前の様に行われていて、数値の比較が行われいるケースは、製造業に限らず多々あると思います。
 
...
 saikoro1統計学を学ぶ利点の一つは「誤差」に惑わされなくなる点だと思います。同じ条件で行ったとしても同じ結果が出ない事は数多くあります。所謂ばらつきであり偶発的誤差が出ているからです。
 
 例えばサイコロを300振って、1が60回出ました。これは1が出やすいサイコロだと言えるでしょうか。1~6までの各目が均等に出れば確率は1/6です。300回振れば、50回1の目が出れば1/6となります。しかし実際は均等に振っていてもばらつきが生じます。
 
 上の例のように60回1の目が出ていてもばらつきの範囲内と言えるでしょうか。この様なケースには多々遭遇するのでは無いかと思います。歩留り改善対策を実施した結果、先月より0.3%上昇しました。果たしてこれは改善したと断言して良いのでしょうか。断言は出来ないけど悪化してないので継続してみましょうか、となりそうです。 逆に0.3%のダウンなら・・・効果なさそうなので止めましょう、となるかもしれません。
 
 これが1%アップなら『効果ありました』と自信を持って言えるのか・・・。今回のようなケースはカイ二乗検定を用いて有意差と言えるのか、誤差程度なのかのを判定をする事が出来ます。
 
 ある会社の先月の製造歩留まりが、96.7%でした。歩留まりを改善する為ある対策を実施した所、歩留まりは97.0%になりました。数値上は0.3%上がっていますが果たして改善したと言っても良いでしょうか(図1)
 
                gosa89    
図1.製造歩留まりの推移
 
 有意水準1%でカイ二乗検定を行うと73%の確率で、この程度の差異は生じ得ると言う判定結果となります。 つまり統計的には改善されたとは見なされない結果となります。まさに誤差範囲での変動を効果があると喜ぶ『 悲劇 』が生じるのです。統計的手法を用いれば、数値の変化に一喜一憂する前に、果たしてそれが意味がある変化なのかどうか、判断することが可能になります。
 
 上の例は歩留まりですが、約1000人採用した場合の一年後離職者数として考えれば、採用の 評価でも同じように活用することが出来ます。決して製造業向けの方法では無く、あらゆる業種・職種で用いることが出来ます。ビジネスシーンでは、アクションに対する効果有無の比較は当たり前の様に行われていて、数値の比較が行われいるケースは、製造業に限らず多々あると思います。
 
 平均値の差ばかりをシビアに見ても、実は誤差程度で意味が無い場合が多いのです。結果として上がったとは言えても改善されたと言えるかは、別の話しなのです。統計的手法を用いれば対策効果を自信を持って判定する事が可能となります。
 
 因みに冒頭のサイコロの例は、60回1の目が出るのは29%の確率であり得ます。つまり300回サイコロを振る試行を100サイクル行ったとしたら、その内29回は1の目が60回以上出る可能性がある、と言うことになります。統計的手法を用いて、結果を科学的に考察する事で、誤差の悲劇から逃れましょう。 

   続きを読むには・・・


この記事の著者

眞名子 和義

ムダ・ムラ・ムリの「3ムの撤廃が企業収益向上に繋がる」を信条とし、お客様の"視座"に立ったご提案を致します

ムダ・ムラ・ムリの「3ムの撤廃が企業収益向上に繋がる」を信条とし、お客様の"視座"に立ったご提案を致します


「検定・推定」の他のキーワード解説記事

もっと見る
統計的有意差検定と有意水準

1.表が出やすいコインの判定と有意水準  有意差の判定を、コイントスの事例で考えてみましょう。普通のコインならば、コイントスで表裏の出る割合はほぼ同じと...

1.表が出やすいコインの判定と有意水準  有意差の判定を、コイントスの事例で考えてみましょう。普通のコインならば、コイントスで表裏の出る割合はほぼ同じと...


コスト改善と、有意差検定

 コスト改善と聞いてどの様な取り組みをイメージしますか、一般的にはコストダウンと絞り込んだ方がわかりやすいかもしれません。製造業で言えばある製品を一個造る...

 コスト改善と聞いてどの様な取り組みをイメージしますか、一般的にはコストダウンと絞り込んだ方がわかりやすいかもしれません。製造業で言えばある製品を一個造る...


Ω(オメガ)変換とは   

1. Ω(オメガ)変換が必要な理由  歩留り90%のものを95%にするのは、歩留り30%を60%にするより難しいといいます。これは元々よいも...

1. Ω(オメガ)変換が必要な理由  歩留り90%のものを95%にするのは、歩留り30%を60%にするより難しいといいます。これは元々よいも...


「検定・推定」の活用事例

もっと見る
仮説検定:洞窟ツアーと p値

        今回は、ケンタッキー州にあるマンモス・ケーブ国立公園に行った事からの事例解説です。この国立公...

        今回は、ケンタッキー州にあるマンモス・ケーブ国立公園に行った事からの事例解説です。この国立公...


母平均の検定事例(母分散が既知の場合)

 今回は、母集団が正規分布であり、平均値と分散値が既知である場合の検定事例を取り上げます。  小学校4年生のある年の全国身長調査で平均値は143.5cm...

 今回は、母集団が正規分布であり、平均値と分散値が既知である場合の検定事例を取り上げます。  小学校4年生のある年の全国身長調査で平均値は143.5cm...