群内誤差と群間誤差 (その1)

投稿日

 統計学を学ぶ最大の利点の一つは、『効果と誤差』についての理解ができることです。逆に言えば改善gosa1アクションを行った時、効果と誤差を区別出来なければ、それが意味があるアクションなのかどうかを正しく判断することが出来ません。
 
 例えば改善を行い検証試験を行い以前より平均値が3%良くなった、しかし、その平均値は以前と同じ条件でも何度か試行を繰り返していれば、時々生じる程度の変化では無いのか、所謂ばらつきの範囲内では無いのか、 という疑問に行き着く事も珍しくないのでは無いでしょう。これを疑問に思うか、疑わず効果があったと信じこんで先に進むかは大きな違いです。
 
 条件変えてテストを行った時、それが従来条件でも生じうる誤差範囲の変化なのか、新しい条件故の効果なのかを科学的に判断する手法を知らなければ、自信を持って判断が出来ないと思います。この疑問に答える基本となる手法が、『統計的検定、区間推定や分散分析』なのです。
 
 例えば500mlのペットボトルにジュースを注入する工程があるとします。同一条件で注入を行うなら注入量のばらつきは誤差と言えます。つまり注入量の平均μに対する各サンプル量の差(偏差)が誤差となります。
 
 一方でこの工程では4台の装置を用いて作業を行っていたとしましょう。各装置1-4号機での注入量の平均をそれぞれa1、a2、a3、a4とすると、全体平均μに対するa1~a4の差は装置誤差と言えます。この装置別の平均と全体平均との差を群間誤差と言います。各装置の平均とサンプルとの差、即ち個別号機内のばらつきを群内誤差と言います。つまり各サンプルの値は、全体平均と『群間誤差と群内誤差』で説明出来ると言えます。
 
 プロセス全体でばらつきを観ていた場合、『群間誤差』が大きくなっているのか、『群内誤差』が大きくなっているのかで対処の方法も異なります。つまり変化を装置毎の層別分析で捉え群間誤差と群内誤差を観れば迅速に適切な対処を行うことが可能となります。
 
 もう一つ例を上げて説明します。 Aさん、Bさん、Cさん、Dさんがボーリングを行い、それぞれ5ゲーム投げました。合計ゲーム数は20ゲームであり、総平均スコアをμとします。この場合各プレイヤー個人のばらつきが『群内誤差』で、各プレイヤーの平均スコアとμの差が『群間誤差』となります。
 
 5ゲームマッチの結果の判定はアベレージスコアで行います。しかし4人...
 統計学を学ぶ最大の利点の一つは、『効果と誤差』についての理解ができることです。逆に言えば改善gosa1アクションを行った時、効果と誤差を区別出来なければ、それが意味があるアクションなのかどうかを正しく判断することが出来ません。
 
 例えば改善を行い検証試験を行い以前より平均値が3%良くなった、しかし、その平均値は以前と同じ条件でも何度か試行を繰り返していれば、時々生じる程度の変化では無いのか、所謂ばらつきの範囲内では無いのか、 という疑問に行き着く事も珍しくないのでは無いでしょう。これを疑問に思うか、疑わず効果があったと信じこんで先に進むかは大きな違いです。
 
 条件変えてテストを行った時、それが従来条件でも生じうる誤差範囲の変化なのか、新しい条件故の効果なのかを科学的に判断する手法を知らなければ、自信を持って判断が出来ないと思います。この疑問に答える基本となる手法が、『統計的検定、区間推定や分散分析』なのです。
 
 例えば500mlのペットボトルにジュースを注入する工程があるとします。同一条件で注入を行うなら注入量のばらつきは誤差と言えます。つまり注入量の平均μに対する各サンプル量の差(偏差)が誤差となります。
 
 一方でこの工程では4台の装置を用いて作業を行っていたとしましょう。各装置1-4号機での注入量の平均をそれぞれa1、a2、a3、a4とすると、全体平均μに対するa1~a4の差は装置誤差と言えます。この装置別の平均と全体平均との差を群間誤差と言います。各装置の平均とサンプルとの差、即ち個別号機内のばらつきを群内誤差と言います。つまり各サンプルの値は、全体平均と『群間誤差と群内誤差』で説明出来ると言えます。
 
 プロセス全体でばらつきを観ていた場合、『群間誤差』が大きくなっているのか、『群内誤差』が大きくなっているのかで対処の方法も異なります。つまり変化を装置毎の層別分析で捉え群間誤差と群内誤差を観れば迅速に適切な対処を行うことが可能となります。
 
 もう一つ例を上げて説明します。 Aさん、Bさん、Cさん、Dさんがボーリングを行い、それぞれ5ゲーム投げました。合計ゲーム数は20ゲームであり、総平均スコアをμとします。この場合各プレイヤー個人のばらつきが『群内誤差』で、各プレイヤーの平均スコアとμの差が『群間誤差』となります。
 
 5ゲームマッチの結果の判定はアベレージスコアで行います。しかし4人の腕前に差があるとアベレージスコアだけで言いきれるでしょうか?
 プレイヤー間の腕前に有意な差があるかどうかを判定するには平均値だけでは無く、このばらつきの評価を正しく行う必要があります。なぜならプレイヤー個人のばらつきが大きければ、再度勝負した時にも同様のアベレージスコアが出るとは言えず、平均値での比較は判断が難しいからです。『群間誤差』と『群内誤差』を理解する事でばらつき原因の推測や抑制対策も的確となります。
 
 この項のその2では、『群間誤差』と『群内誤差』を識別する基本手法を説明します。
   

   続きを読むには・・・


この記事の著者

眞名子 和義

ムダ・ムラ・ムリの「3ムの撤廃が企業収益向上に繋がる」を信条とし、お客様の"視座"に立ったご提案を致します

ムダ・ムラ・ムリの「3ムの撤廃が企業収益向上に繋がる」を信条とし、お客様の"視座"に立ったご提案を致します


「検定・推定」の他のキーワード解説記事

もっと見る
母比率の区間推定 - 視聴率の一喜一憂 -

 統計的区間推定は%などの比率データにも適用できます。比率データとして代表的なものに視聴率データがあります。予備知識としてビデオリサーチ社のウェブサイト情...

 統計的区間推定は%などの比率データにも適用できます。比率データとして代表的なものに視聴率データがあります。予備知識としてビデオリサーチ社のウェブサイト情...


Ω(オメガ)変換とは   

1. Ω(オメガ)変換が必要な理由  歩留り90%のものを95%にするのは、歩留り30%を60%にするより難しいといいます。これは元々よいも...

1. Ω(オメガ)変換が必要な理由  歩留り90%のものを95%にするのは、歩留り30%を60%にするより難しいといいます。これは元々よいも...


プロセスのばらつきと測定のばらつき

 データ分析を行う上でばらつきの評価は避けて通れません。同じ手順で実施しているつもりでも実際は微妙に異なりばらつきが発生します。そのばらつきを出来るだけ小...

 データ分析を行う上でばらつきの評価は避けて通れません。同じ手順で実施しているつもりでも実際は微妙に異なりばらつきが発生します。そのばらつきを出来るだけ小...


「検定・推定」の活用事例

もっと見る
仮説検定:洞窟ツアーと p値

        今回は、ケンタッキー州にあるマンモス・ケーブ国立公園に行った事からの事例解説です。この国立公...

        今回は、ケンタッキー州にあるマンモス・ケーブ国立公園に行った事からの事例解説です。この国立公...


母平均の検定事例(母分散が既知の場合)

 今回は、母集団が正規分布であり、平均値と分散値が既知である場合の検定事例を取り上げます。  小学校4年生のある年の全国身長調査で平均値は143.5cm...

 今回は、母集団が正規分布であり、平均値と分散値が既知である場合の検定事例を取り上げます。  小学校4年生のある年の全国身長調査で平均値は143.5cm...