
5G、自動運転、車のEV化に供する積層セラミックコンデンサ(MLCC)における材料、多層化、大容量化、高信頼性化の最新動向
進化が続く積層セラミックコンデンサの基礎から最前線まで詳解します!
セミナー趣旨
5Gシステムは「Sub6」、 「NR化」、「ミリ波」と進化することで通信基盤から生活基盤へと進化し、様々な業界で利用され始めた。また、生成AI(人工知能)が空前のブームであるが、条件付き自動運転の「レベル3」、特定条件下の完全自動運転の「レベル4」といった高度な自動運転技術の普及がAI技術と相まって、自動車の自動運転はサイバー空間と現実世界(フィジカル空間)との融合を目指している。
これらの世界を実現するために、まず第一に高集積・大容量のCPUが必須であり、これらを安定に動かす受動部品の代表である積層セラミックスコンデンサ-(MLCC)は小型・大容量・高性能・省電力・高信頼化が進んできた。特に、 Ni内電MLCCはNi金属の低コスト化を特徴にして大容量・小型化が急激に進んだ。チップサイズは年々小型化し0201タイプ(0.2×0.1mm)10μFの実用化も始まっている。一方、生成AIサーバー向けに1608タイプ(1.6x0.8mm)の100μFの大容量MLCCの量産も発表された。
当講座ではNi内電MLCCの適用例を取り上げ ”材料から始まって、これらの高積層技術、高信頼性技術”と更に将来展望まで幅広く、且つ詳細に解説を行なう。
習得できる知識
・何故、日本メーカは強いのか
・積層コンデンサ-(MLCC)材料の基礎から応用
・原料からMLCC積層体
・内部電極の進化
・MLCCの高積層・高容量の技術
・積層の技術、その問題
・MLCCの信頼性技術
セミナープログラム
1.移動通信システムの進化/自動運転レベル3、自動運転レベル4とは
2.AIサーバー用大容量MLCCの必要性
3.民生用/車載用MLCCサイズの変遷
4.MLCCの温度特性:車載用/生成AIには
5.コンデンサのDC電圧依存性 (Class1 vs Class2 MLCCの温度特性/DC特性/温度上昇)
6.スマートホンに搭載される電子部品の個数/自動車に搭載されるMLCCの個数
7.AI サーバー向け大容量MLCC
8. ムーアの法則は生きているか, そろそろ飽和?ロジック半導体の微細化ではムーアの法則は生きている
9.MLCCの世界ランキングと市場, MLCC事情、MLCCの世界ランキングが変わる
10. Ni-MLCCの商用化で IEEE Milestone賞を受賞
11. MLCCをLCR等価回路で考えると,低ESLコンデンサの利用、Lキャンセルトランス
12. Lキャンセルトランスで、ノイズ対策、近傍アンテナ間のノイズ対策
13. MLCC材料から見たBaTiO3+希土類+アクセプタ+固溶制御材+焼結助剤の歴史
14. MLCCの小型化,容量密度の進化,誘電体層薄層化の進化
15. MLCCの進展方向,小型化,大容量,高信頼性,自動車用コンデンサの要求性能
16. Ni-MLCCの製造プロセス,グリーンシートの技術動向
17. 高信頼性MLCCに必要なこと,微小粒径,コア・シェル構造の利点
18. BaTiO3の誘電率のサイズ効果/小型・大容量化の課題、コアシェル構造の効用
19. 薄膜用MLCCに求められる特性,水熱BaTiO3、修酸法BaTiO3
20. 微少・均一BaTiO3のためのアナターゼTiO2, アナターゼTiO2の合成法
21. 固相反応によるBaTiO3 の反応メカニズム
22. 水蒸気固相反応法、水を介してBaTiO3の低温反応/水で加速する室温固相反応(BaTiO3)/
Cold sintering は実用化できるか
23.粉砕と分散とは、メデイアのサイズ、メデイアの材質
24. 微小ビーズ対応ミルによるナノ分散テクノロジー最前線
25. 分散技術/分散質の種類と分散系/分散機構の概要
26. MLCC分野におけるポリグリセリン誘導体の検討、MLCC用添加剤材/MLCCへの適用、MLCC焼結体への効果
27. BaTiO3ナノキューブの開発と適用、BTナノキューブ/グラフェン積層体のMLCC適用
28. RFプラズマ法による複合ナノ粒子合成
29. 分級、MLCCの内電Ni粒子に最も重要な技術/Niナノ粒子の作り方(分級の役割)
30. MLCCでもう一つ重要な要素、内部電極と外部電極
31. 高積層・高容量MLCCのためのNi内部電極用Ni微粒子、
32. 供材の効果(Ni電極と誘電体の線膨張係数差を如何に少なくする)
33. 2段焼成法のNi内部電極の効果、カバーレッジの向上
34. Ni内部電極の成形メカニズム(膜断面の観察)、Ni内部電極の連続性(カバーレッジ)向上のメカニズム
35. 熱プラズマNi微粒子の合成、粒度分布、表面不活性、
36. Ni電極への添加効果(Ni-Cr, Ni-Sn), Ni-Sn内電MLCCの特性
37. Ni電極印刷法(グラビア印刷)、プラズマ法、微粒子コーテイング法
38. MLCC外部電極(高温対応)
39. セラミックスコンデンサー(MLCC)の温度特性
40. X8R規格のMLCC、(Ba,Ca,Sn)TiO3の特性評価、Caの役割、Snの役割
41. X8R規格のMLCCの他の方法、応力印加効果
42. 電圧印加で容量が増加するMLCCとは、PZT薄膜のキュリー点が600℃???
歪エンジニアリング/”Strain Engineering”
43. 導電性高分子コンデンサ、フィルムコンデンサ、シリコンキャパシター
44. 2022 Taiwan-Japan Passive Component Technology Symposium
45. 積層セラミックスコンデンサ(MLCC)の信頼性/BaTiO3の絶縁性/
46. 絶縁破壊と絶縁劣化/BaTiO3の絶縁性を上げるための添加物の役割
47. 置換サイトの基本は絶縁性、BaTiO3のどのサイトに入る, 置換サイトの同定法
48. BaTiO3の高温電気伝導に与えるBa/Ti比、希土類効果
49. MLCCの絶縁劣化メカニズム/絶縁抵抗:時間、HALT結果
50. コア・シェル構造の絶縁抵抗依存性/Cu, Sn固溶Ni-MLCCの絶縁抵抗時間変化
51. 誘電体の導電メカニズムの分類/薄膜、MLCCのリ―ク電流依存性
52. ショットキー電流とプールフランケル電流/Cu-MLCCとNi-MLCCの特性の違い
53. 劣化時のリーク電流の変化について/酸素欠陥評価法:熱刺激電流
54. 交流インピーダンス・等価回路法による評価、MLCC, SOFCに適用
55. 圧電応答顕微鏡(PFM),接触共振-圧電応答顕微鏡(CR-PFM)、KFM法による表面電位測定,
56. 酸素欠陥(熱刺激電流)による酸素欠陥の評価
57. MLCCの絶縁抵抗劣化に及ぼすLa添加効果
58. セラミック/内部電極界面,粒内,粒界を流れる電流、JE特性による分類
59. 最近のMLCC研究動向
60. まとめ
付記)現象論的熱力学を用いたBaTiO3の特性シミユレーション
<質疑応答>
セミナー講師
防衛大学 名誉教授 大阪公立大学 客員教授 工学博士 山本 孝 氏
セミナー受講料
【オンラインセミナー(見逃し視聴なし)】:1名47,300円(税込(消費税10%)、資料付)
*1社2名以上同時申込の場合、1名につき36,300円
【オンラインセミナー(見逃し視聴あり)】:1名52,800円(税込(消費税10%)、資料付)
*1社2名以上同時申込の場合、1名につき41,800円
*学校法人割引;学生、教員のご参加は受講料50%割引。
受講について
- 配布資料はPDF等のデータで送付予定です。受取方法はメールでご案内致します。
(開催1週前~前日までには送付致します)
※準備の都合上、開催1営業日前の12:00までにお申し込みをお願い致します。
(土、日、祝日は営業日としてカウント致しません。) - 受講にあたってこちらをご確認の上、お申し込みください。
- Zoomを使用したオンラインセミナーです
→環境の確認についてこちらからご確認ください - 申込み時に(見逃し視聴有り)を選択された方は、見逃し視聴が可能です
→こちらをご確認ください
受講料
47,300円(税込)/人