半導体微細加工技術と様々な技術を組み合わせて、小形部品を形成するMEMS (Micro Electro Mechanical Systems)と呼ばれる技術は、半導体と同様にウェ-ハ上で多数を一括製造できるため小形・安価で、高度な機能を持たせることができます。自動車やスマホなど身の周りで沢山使われているMEMS、今回は、MEMSの概要を解説します。
1.MEMSとは
MEMSは、マイクロ・エレクトロニクス、マイクロ・メカトロニクス、マイクロ・オプティクスとそれを支える材料技術の融合体で、利用分野も多岐にわたります。通信、バイオテクノロジー、センサネットワークなどです。これらの市場は応用範囲も広がり毎年増大を続けており、半導体、ディスプレイ産業に次ぐデバイス産業第3の波になるのではないでしょうか。
さまざまな製品の小型化にMEMSは貢献しています。たとえば、インクジェットプリンタのヘッド部にある微小ノズル、ジャイロスコープ、圧力センサ、加速度センサ、流量センサなどの各種のセンサなどがあります。また、医療用としても応用されています。
2.MEMSの特長
LSIがウェ-ハに電子回路を集積していたのに対して、MEMSの特長は、立体的な積層技術によって電気的機能とメカニカル機構をウェ-ハ上に大量生産出来ます。この特長により、MEMSデバイスは、更なる小型化、低消費電力化が期待出来ます。
半導体プロセス技術を応用してMEMSは作られるため、精度が数ミクロンの小さな機械が作れて、部品そのものを劇的に小型化することができます。また、半導体と同様で、大量生産により価格を安くすることができます。
3.MEMSの使われ方
Digital Micro mirror Device :DMDはMEMS技術を利用したディスプレイの代表例です。これは、TI(テキサスインスツルメンツ)社が製品化しており、プロジェクターなどに採用されています。DMDは、Si基板上に画素に相当するミラーが作り込まれていて、電極はミラーの対角部の真下にあり、電極に信号を与えることでミラーが傾き、光の反射角を制御できるのです。これらのミラーを制御してスクリーンに画像を表示します。
このほか、MEMS技術で製造した赤外線温度センサICをTI社は、製品化しています。赤外線を吸収することで出力電圧が変化する熱電堆をMEMS技術で製造したものです。チップ上には、16ビットA-D変換器、ローカル温度センサなども集積しています。温度測定範囲は-40~+125℃。センサ出力電圧は7μV/℃です。パッケージは、8ピンWCSP(実装面積1.6mm×1.6mm)です。
4.MEMSの製造と今後
MEMSの製造は、サーフェイス・マイクロマシンとバルク・マイクロマシンの二つに分けられます。サーフェイス・マイクロマシンは、基板表面に作り込んだ数㎛厚の薄膜を利用して製造したものです。バルク・マイクロマシンは、数十㎛の厚膜を利用します。両者に共通していることは、機械構造物を薄膜成長・エッチング・フォリソグラフィの技術で作り込みます。
MEMSに作り込み可能な構造物は、ダイヤフラム、ビーム、プリング、ウエイト、ミラーなどがあります。センサでは、圧力センサ、流量センサ、温度センサ、加速度センサ、角速度センサなどが実現可能です。
MEMSデバイスのメリットは、小型・低消費電力・低コスト化などです。外形については、従来型加速度センサが、たばこの箱の大きさで、このためアプリケーションは大きな制限を受けていました。それがMEMS技術では、数mm角で実現でき、スマホ、家庭用ゲーム機のコントローラなどへの搭載が進みました。
MEMSの今後ですが、医療分野に対するMEMS 技術の利用があります。これは単なる生体内での極限計測の実現にとどまらず、従来技術では不可能であった新たな生体情報をMEMSで得ることが可能になります。その結果、それらの情報から適切な診断・治療サービスが提供できるようになるなど、MEMSが新たな医療分野を生み出す原動力となる...