計測真値不明で「誤差」を求める方法

投稿日

 計測の世界では、誤差(精度)を求めることが必要ですが、誤差は真値―計測値で定義されているため、真値が分からなければ誤差は求められません。それにもかかわらず科学技術問題では、質量や長さや時間や電流値などの、物理特性の精度を問題にすることが要求されます。

 世の中では真値があるとして誤差を求めていますが、真値は約束事であって実際には存在しないのです。そこで、品質工学では、真値不明で誤差を求めることを考えました。体重計の精度を求める具体的事例で説明してみましょう。

 体重計の誤差は「真値-読み値」で表されます。

1.準備するもの:家庭にあるバケツ2個と人間一人

2.実験:水の入ったバケツを2個用意します。ヘルスメータでバケツの水の重さが全く同じで3kg(何キロクラムでもよい)になるように水量を調節します。
次に、使用条件として、硬い床の上(N1)と軟らかいマットの上(N2)で、下表のような実験を行います。人間が乗る位置をノイズにしてもよいでしょう。

M1(人)kg M2(人+バケツ1個) M3(人+バケツ2個)
N1硬い床の上 y1177.0 y1279.5 y1382.5
N2軟らかいマットの上) y2178.0 y2280.5 y2384.0

3.理想機能はゼロ点比例式(y=βM)で評価できますが、計測精度を高めるために、M2を基準にしてデータを基準化して、下表のように「基準点比例式」 で誤差を評価します。

M2=M0の時のデータの平均値はy0=80kgです。

M1-M0-3kg)  M2-M00kg M3-M0+3kg
N1(硬い床の上)   y11-y0 -3.0  y12-y0(-0.5) y13-y0 +2.5
N2(軟らかいマットの上) y21-y0 -2.0 y22-y0 +0.5 y23-y0 +4.0
  計   y1 -5.0)   y2 0.0 y3 +6.5)

4.解析と精度の推定

全2乗和 :  ST=Σ(y11-y0)2=(-3.0)2+(-0.5)2+2.52+(-2.0)2+0.52+4.02=35.75
有効除数 : r=(M1-M0)2+(M3-Mo)2=(-3.0)2+3.02=18
比例項の変動 : Sβ={Σ(M1-M0)y1}2/2r={(-3.0)×(-0.5)+3.0×6.5}2/36=33.06
誤差変動 : Se=ST-Sβ=35.75-33.06=2.69
誤差分散 :  Ve=Se/φ=Se/5=2.69/5=0.538
SN比  : η=β22={(Sβ-Ve)/2r}/Ve={(33.06-0.538)/36}/0.538=1.673
感 度  : S=β2=(Sβ-Ve)/2r=(33.06-0.538)/36=0.903
校正後のばらつき :  σ22/η=1/1.673=0.5977

 目標値がβ0=1ですから

校正後...

 計測の世界では、誤差(精度)を求めることが必要ですが、誤差は真値―計測値で定義されているため、真値が分からなければ誤差は求められません。それにもかかわらず科学技術問題では、質量や長さや時間や電流値などの、物理特性の精度を問題にすることが要求されます。

 世の中では真値があるとして誤差を求めていますが、真値は約束事であって実際には存在しないのです。そこで、品質工学では、真値不明で誤差を求めることを考えました。体重計の精度を求める具体的事例で説明してみましょう。

 体重計の誤差は「真値-読み値」で表されます。

1.準備するもの:家庭にあるバケツ2個と人間一人

2.実験:水の入ったバケツを2個用意します。ヘルスメータでバケツの水の重さが全く同じで3kg(何キロクラムでもよい)になるように水量を調節します。
次に、使用条件として、硬い床の上(N1)と軟らかいマットの上(N2)で、下表のような実験を行います。人間が乗る位置をノイズにしてもよいでしょう。

M1(人)kg M2(人+バケツ1個) M3(人+バケツ2個)
N1硬い床の上 y1177.0 y1279.5 y1382.5
N2軟らかいマットの上) y2178.0 y2280.5 y2384.0

3.理想機能はゼロ点比例式(y=βM)で評価できますが、計測精度を高めるために、M2を基準にしてデータを基準化して、下表のように「基準点比例式」 で誤差を評価します。

M2=M0の時のデータの平均値はy0=80kgです。

M1-M0-3kg)  M2-M00kg M3-M0+3kg
N1(硬い床の上)   y11-y0 -3.0  y12-y0(-0.5) y13-y0 +2.5
N2(軟らかいマットの上) y21-y0 -2.0 y22-y0 +0.5 y23-y0 +4.0
  計   y1 -5.0)   y2 0.0 y3 +6.5)

4.解析と精度の推定

全2乗和 :  ST=Σ(y11-y0)2=(-3.0)2+(-0.5)2+2.52+(-2.0)2+0.52+4.02=35.75
有効除数 : r=(M1-M0)2+(M3-Mo)2=(-3.0)2+3.02=18
比例項の変動 : Sβ={Σ(M1-M0)y1}2/2r={(-3.0)×(-0.5)+3.0×6.5}2/36=33.06
誤差変動 : Se=ST-Sβ=35.75-33.06=2.69
誤差分散 :  Ve=Se/φ=Se/5=2.69/5=0.538
SN比  : η=β22={(Sβ-Ve)/2r}/Ve={(33.06-0.538)/36}/0.538=1.673
感 度  : S=β2=(Sβ-Ve)/2r=(33.06-0.538)/36=0.903
校正後のばらつき :  σ22/η=1/1.673=0.5977

 目標値がβ0=1ですから

校正後の誤差  : σ=√0.5977=0.773
正規分布を仮定した誤差の範囲: ±3×0.773=±2.32[kg]

 読み値yと信号Mとの関係から、校正後の「真値の推定と誤差の範囲」は以下のように推定することができます。

   M=M0+(y-yo)/β±3σ=1.05y-4.21±2.32[kg]

 

5.結論

  製品の誤差(σv2) =実物の誤差σ D2+計測器の誤差σM2 +標準器の誤差σS2

 製品誤差は上記のように3つの誤差の和で表されますが、前項までで求めた誤差は実物の誤差だけですから、計測器の誤差も同じようにSN比を求めて誤差を推定する必要があります。標準器の誤差はメーカーでは評価できないので、定期的に公的機関で校正する必要があります。 

   続きを読むには・・・


この記事の著者

原 和彦

品質工学を通して製品開発、設計の真髄を伝えます

品質工学を通して製品開発、設計の真髄を伝えます


「機能性評価」の他のキーワード解説記事

もっと見る
「目的機能」と「基本機能」の機能性評価

 品質工学での機能性評価は、消費者の期待する「目的機能」と技術手段の「基本機能」に分けることができます。目的機能は消費者が欲しいものだけでなく、欲しくない...

 品質工学での機能性評価は、消費者の期待する「目的機能」と技術手段の「基本機能」に分けることができます。目的機能は消費者が欲しいものだけでなく、欲しくない...


信頼性テストは卒業試験 -品質工学の考え方-

 新製品開発の際に行われる信頼性テストは、ちょうど卒業試験のようなものです。日本の大学は「入学は難しいが、卒業は易しい」のでピンと来ないかもしれませんが、...

 新製品開発の際に行われる信頼性テストは、ちょうど卒業試験のようなものです。日本の大学は「入学は難しいが、卒業は易しい」のでピンと来ないかもしれませんが、...


機能のモデル化 製品機能(その2)

【製品機能 連載目次】 製品機能(その1)品質工学における機能の重要性 製品機能(その2)機能のモデル化 製品機能(その3)Effectsの機能...

【製品機能 連載目次】 製品機能(その1)品質工学における機能の重要性 製品機能(その2)機能のモデル化 製品機能(その3)Effectsの機能...


「機能性評価」の活用事例

もっと見る
フォトカプラの新規品を合理的に判定した安川電機の事例

2012年の品質工学会研究発表大会で株式会社安川電機の平林和也さんが発表した「フォトカプラの機能性評価」の概要を掲載します。   1.はじめに  電...

2012年の品質工学会研究発表大会で株式会社安川電機の平林和也さんが発表した「フォトカプラの機能性評価」の概要を掲載します。   1.はじめに  電...


消費者の立場で行った開発事例-マッサージ機を品質工学で-

 筆者が在籍した企業で体験したマッサージ器具の開発事例で、品質工学を活用した具体的な説明を行います。 ◆関連解説『品質工学(タグチメソッド)とは』 ...

 筆者が在籍した企業で体験したマッサージ器具の開発事例で、品質工学を活用した具体的な説明を行います。 ◆関連解説『品質工学(タグチメソッド)とは』 ...


フォトカプラのコストダウンと市場トラブル防止を同時に達成した事例

2007年の品質工学会研究発表大会で株式会社ナナオの中西貴志さんが発表した「フォトカプラの機能性評価」の概要を掲載します。   1.はじめに  電子...

2007年の品質工学会研究発表大会で株式会社ナナオの中西貴志さんが発表した「フォトカプラの機能性評価」の概要を掲載します。   1.はじめに  電子...