データ活用プラットフォームとデータサイエンス データ分析講座(その298)

更新日

投稿日

データ分析講座(その298)データから垣間見る人間模様を想像する事象理解

 

データをいかに活用しビジネスを加速させればいいのか。そのためのツールとして、データ活用プラットフォームがあります。呼び方は様々で、単にデータプラットフォームと呼ばれたり、データ活用基盤と呼ばれたり、データマネジメントプラットフォームと呼ばれたり、色々です。

 

データ活用プラットフォームをどのように構築するのかは、ビジネスに重大な影響を与える可能性があるため、とても刺激的で、そして困難を伴うものです。データ活用プラットフォームの部品は、AWSやAzure、Google Cloudなどでクラウドサービスとして提供されているため、多くの場合はそれらを組み合わせれば十分でしょう。そういう意味では、非常に手軽にデータ活用プラットフォームを構築できるようになりました。今回は「データ活用プラットフォームとデータサイエンス」というお話しをします。

【目次】

     

    【この連載の前回:統計的機械学習で使用する混同行列と評価指標 データ分析講座(その297) へのリンク】

    ◆データ分析講座の注目記事紹介

     

    1. 何のためにデータ活用プラットフォームを作るのか?

    何のために、データ活用プラットフォームを構築するのでしょうか?理由は様々ですが、抽象的に表現すると「意思決定プロセスを支援しビジネス拡大するため」でしょう。意思決定プロセスのスピードや質などを向上させたり、効率化したり、といったところだと思います。要は「誰かが何かを判断し決めるときにデータに基づいたサポートをする」という感じです。そういうことは、すぐに実現できないため、当面の目的としては「データ分析作業の効率化」があげられます。

    まとめると次のようです。

    1. 短期的には、今やっている(もしくは、やろうとしている)「データ分析作業の効率化」
    2. 中長期的には、「意思決定プロセスを支援しビジネス拡大するため」

     

    2. データ活用プラットフォームのイメージ

    データ分析講座(その298)データ活用プラットフォームとデータサイエンス

    発生したデータが活用されるまでに、例えば、次のような幾つかのレイヤー(層)が必要になります。名称は、筆者が付けました。人により呼び方は異なると思います。

    • データ収集レイヤー
    • 統合レイヤー
    • 前処理レイヤー
    • ストレージレイヤー
    • アナリティクスレイヤー

     

    データ収集レイヤーとは、様々なデータソースを集めるレイヤーです。購買履歴データであったり、財務データであったり、Webログデータであったり、各種マーケティングデータだったりします。農作物で例えると、果物や野菜を収穫する感じです。

     

    それらのデータを統合するのが、統合レイヤーです。ETLと呼ばれる処理が実施されることが多いです。ETLとは、Extract(抽出)・Transform(変換)・Load(格納)の頭文字をとったものです。要は、データソースから必要なデータを抽出し変換し、そしてストレージに格納します。ETLは非常に地味ですが、非常に重要です。農作物で例えると、収穫した果物や野菜を選別し出荷した感じです。

     

    ストレージレイヤーとは、端的に言うとBIツールなどを接続するデータウェアハウスです。このデータウェアハウスに接続し、集計や分析、数理モデルなどの構築などを実施していきます。農作物で例えると、出荷された果物や野菜を格納する倉庫(ウェアハウス)といった感じです。

     

    前処理レイヤーでは、ストレージレイヤーのデータウェアハウスに接続し、前処理を実施します。

     

    統合レイヤーからストレージレイヤーに流れてきたデータは、畑から選別され出荷された果物や野菜のようなものです。そこにさらに何かしら処理を加えます。調理する人などが使いやすいように一手間二手間加えます。例えば、小分けにしてみたり、カットしてみたり、調理してみたりし、店先に並べます。

     

    データも同じで、統合レイヤーからストレージレイヤーに流れてきたデータ対し、データ活用する人などが使いやすいように一手間二手間加えます。それが前処理です。

     

    アナリティクスレイヤーとは、BIツールなどでストレージレイヤーのデータウェアハウスに接続して活用したり、データサイエンティストがストレージレイヤーのデータウェアハウスに接続して活用し高度なデータ分析や数理モデル構築などをしたりします。

     

    アナリティクスレイヤーで各種検討されたデータ分析方法や数理モデルなどの中には、定期的に実施するものが登場します。そういったものは、前処理レイヤーに移行します。そのとき、ほぼ人手から離れた状態にしておく必要があります。

     

    3. 制約事項と優先すべきお困りごと

    データ活用プラットフォームの構築を開始するとき、先ず明らかにすべきは、以下の2点です。

    •  ヒト・モノ・カネ・時間・技術などの制約事項 
    • 優先すべき「お困りごと」(ビジネス課題)

     

    ヒト・モノ・カネ・時間・技術などの制約事項とは、文字通り人的リソースや使える金銭的資源、社内人財だけでできそうなこと、外部に依頼したほうが良さそうなこと、必要な時間などです。優先すべき「お困りごと」(ビジネス課題)とは、データ活用のテーマを洗い出し、そこに優先順位を付けていくことです。いきなり、予測モデルや異常検知モデルなどの数理モデルを活用するテーマにするのではなく、集計ベースのデータ活用で実現できるテーマを選ぶなどをしたほうがいいでしょう。

     

    データ活用プラットフォームを構築することは、非常に刺激的ですが、困難を伴うものです。そこに、挑むデータ活用テーマそのものが難しいと、2重苦になります。そのため、データ活用プラットフォームを使ったデータ活用テーマは、最初は集計ベースのデータ活用で実現できるテーマを選ぶと良いでしょう。

     

    4. 長期的視点も忘れない

    先程、データ活用プラットフォームを作る理由として、 短期的には、今やっている(もしくは、やろうとしている)「データ分析作業の効率化」 中長期的には「意思決定プロセスを支援しビジネス拡大するため」と言いました。

     

    ...

    データ分析講座(その298)データから垣間見る人間模様を想像する事象理解

     

    データをいかに活用しビジネスを加速させればいいのか。そのためのツールとして、データ活用プラットフォームがあります。呼び方は様々で、単にデータプラットフォームと呼ばれたり、データ活用基盤と呼ばれたり、データマネジメントプラットフォームと呼ばれたり、色々です。

     

    データ活用プラットフォームをどのように構築するのかは、ビジネスに重大な影響を与える可能性があるため、とても刺激的で、そして困難を伴うものです。データ活用プラットフォームの部品は、AWSやAzure、Google Cloudなどでクラウドサービスとして提供されているため、多くの場合はそれらを組み合わせれば十分でしょう。そういう意味では、非常に手軽にデータ活用プラットフォームを構築できるようになりました。今回は「データ活用プラットフォームとデータサイエンス」というお話しをします。

    【目次】

       

      【この連載の前回:統計的機械学習で使用する混同行列と評価指標 データ分析講座(その297) へのリンク】

      ◆データ分析講座の注目記事紹介

       

      1. 何のためにデータ活用プラットフォームを作るのか?

      何のために、データ活用プラットフォームを構築するのでしょうか?理由は様々ですが、抽象的に表現すると「意思決定プロセスを支援しビジネス拡大するため」でしょう。意思決定プロセスのスピードや質などを向上させたり、効率化したり、といったところだと思います。要は「誰かが何かを判断し決めるときにデータに基づいたサポートをする」という感じです。そういうことは、すぐに実現できないため、当面の目的としては「データ分析作業の効率化」があげられます。

      まとめると次のようです。

      1. 短期的には、今やっている(もしくは、やろうとしている)「データ分析作業の効率化」
      2. 中長期的には、「意思決定プロセスを支援しビジネス拡大するため」

       

      2. データ活用プラットフォームのイメージ

      データ分析講座(その298)データ活用プラットフォームとデータサイエンス

      発生したデータが活用されるまでに、例えば、次のような幾つかのレイヤー(層)が必要になります。名称は、筆者が付けました。人により呼び方は異なると思います。

      • データ収集レイヤー
      • 統合レイヤー
      • 前処理レイヤー
      • ストレージレイヤー
      • アナリティクスレイヤー

       

      データ収集レイヤーとは、様々なデータソースを集めるレイヤーです。購買履歴データであったり、財務データであったり、Webログデータであったり、各種マーケティングデータだったりします。農作物で例えると、果物や野菜を収穫する感じです。

       

      それらのデータを統合するのが、統合レイヤーです。ETLと呼ばれる処理が実施されることが多いです。ETLとは、Extract(抽出)・Transform(変換)・Load(格納)の頭文字をとったものです。要は、データソースから必要なデータを抽出し変換し、そしてストレージに格納します。ETLは非常に地味ですが、非常に重要です。農作物で例えると、収穫した果物や野菜を選別し出荷した感じです。

       

      ストレージレイヤーとは、端的に言うとBIツールなどを接続するデータウェアハウスです。このデータウェアハウスに接続し、集計や分析、数理モデルなどの構築などを実施していきます。農作物で例えると、出荷された果物や野菜を格納する倉庫(ウェアハウス)といった感じです。

       

      前処理レイヤーでは、ストレージレイヤーのデータウェアハウスに接続し、前処理を実施します。

       

      統合レイヤーからストレージレイヤーに流れてきたデータは、畑から選別され出荷された果物や野菜のようなものです。そこにさらに何かしら処理を加えます。調理する人などが使いやすいように一手間二手間加えます。例えば、小分けにしてみたり、カットしてみたり、調理してみたりし、店先に並べます。

       

      データも同じで、統合レイヤーからストレージレイヤーに流れてきたデータ対し、データ活用する人などが使いやすいように一手間二手間加えます。それが前処理です。

       

      アナリティクスレイヤーとは、BIツールなどでストレージレイヤーのデータウェアハウスに接続して活用したり、データサイエンティストがストレージレイヤーのデータウェアハウスに接続して活用し高度なデータ分析や数理モデル構築などをしたりします。

       

      アナリティクスレイヤーで各種検討されたデータ分析方法や数理モデルなどの中には、定期的に実施するものが登場します。そういったものは、前処理レイヤーに移行します。そのとき、ほぼ人手から離れた状態にしておく必要があります。

       

      3. 制約事項と優先すべきお困りごと

      データ活用プラットフォームの構築を開始するとき、先ず明らかにすべきは、以下の2点です。

      •  ヒト・モノ・カネ・時間・技術などの制約事項 
      • 優先すべき「お困りごと」(ビジネス課題)

       

      ヒト・モノ・カネ・時間・技術などの制約事項とは、文字通り人的リソースや使える金銭的資源、社内人財だけでできそうなこと、外部に依頼したほうが良さそうなこと、必要な時間などです。優先すべき「お困りごと」(ビジネス課題)とは、データ活用のテーマを洗い出し、そこに優先順位を付けていくことです。いきなり、予測モデルや異常検知モデルなどの数理モデルを活用するテーマにするのではなく、集計ベースのデータ活用で実現できるテーマを選ぶなどをしたほうがいいでしょう。

       

      データ活用プラットフォームを構築することは、非常に刺激的ですが、困難を伴うものです。そこに、挑むデータ活用テーマそのものが難しいと、2重苦になります。そのため、データ活用プラットフォームを使ったデータ活用テーマは、最初は集計ベースのデータ活用で実現できるテーマを選ぶと良いでしょう。

       

      4. 長期的視点も忘れない

      先程、データ活用プラットフォームを作る理由として、 短期的には、今やっている(もしくは、やろうとしている)「データ分析作業の効率化」 中長期的には「意思決定プロセスを支援しビジネス拡大するため」と言いました。

       

      データ活用プラットフォームを構築し始めると、中長期的視点が記憶の彼方に行ってしまったり、恐ろしいことに短期的視点も消え去りさったりし、データ活用プラットフォームを構築することのみに目が行ってしまうことがあります。言いたいことは、長期的視点も忘れないように、ということです。

       

      先程「意思決定プロセスを支援しビジネス拡大するため」と抽象的に表現しましたが、この抽象的なものを可能にするため、どうすればいいでしょうか。答えは簡単で、より高度なデータ活用を可能にする柔軟かつスケーリング可能なデータ活用プラットフォームを作る、となります。

       

      そのためには「意思決定プロセスを支援しビジネス拡大するため」を具体化し、それらが構築中のデータ活用プラットフォームで実現可能なのかどうかを、チェックする必要がでてきます。データ活用プラットフォームは、データのサイロ化を打破するための1つとして作られる側面もありますが、データ活用プラットフォームそのものがサイロ化されないように気をつける必要があります。

       

      次回に続きます。

       

      【ものづくり セミナーサーチ】 セミナー紹介:国内最大級のセミナー掲載数 〈ものづくりセミナーサーチ〉 はこちら!

       

         続きを読むには・・・


      この記事の著者

      高橋 威知郎

      データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

      データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


      「情報マネジメント一般」の他のキーワード解説記事

      もっと見る
      やったことのないデータ活用を率先してやる データ分析講座(その229)

        【この連載の前回:データ分析講座(その228)上手くいかないと思ったらデータで裏付けへのリンク】 ◆関連解説『情報マネジメントとは』...

        【この連載の前回:データ分析講座(その228)上手くいかないと思ったらデータで裏付けへのリンク】 ◆関連解説『情報マネジメントとは』...


      DXを阻む「鉛筆を舐めておけ文化」 データ分析講座(その231)

        【この連載の前回:データ分析講座(その230)DXという見栄の代償へのリンク】 ◆関連解説『情報マネジメントとは』   ...

        【この連載の前回:データ分析講座(その230)DXという見栄の代償へのリンク】 ◆関連解説『情報マネジメントとは』   ...


      データ活用の効用を得るには データ分析講座(その58)

      ◆ データ活用やAIで「効率化」すべきか、今までの「やり方」を変えるべきか。  IT化は、効率化のためだけでなく、やり方を変えるべきだ。このように従...

      ◆ データ活用やAIで「効率化」すべきか、今までの「やり方」を変えるべきか。  IT化は、効率化のためだけでなく、やり方を変えるべきだ。このように従...


      「情報マネジメント一般」の活用事例

      もっと見る
      ソフトウェア特許とは(その1)

       色々と定義はありますが、ソフトウェア特許とは、よく言うビジネスモデル特許であり、情報システムの特許です。言葉に差はあると思いますが、我々実務家は、ソフト...

       色々と定義はありますが、ソフトウェア特許とは、よく言うビジネスモデル特許であり、情報システムの特許です。言葉に差はあると思いますが、我々実務家は、ソフト...


      Excelの帳票を見直そう

       オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...

       オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...


      ‐クレ-ム情報を開発に活用‐  製品・技術開発力強化策の事例(その13)

       前回の事例その12に続いて解説します。顧客から出されたクレ-ムは、技術開発や、関連製品の開発の可能性を潜在させている場合が多いようです。その視点からクレ...

       前回の事例その12に続いて解説します。顧客から出されたクレ-ムは、技術開発や、関連製品の開発の可能性を潜在させている場合が多いようです。その視点からクレ...