回帰分析は非常にシンプルです。そのため、実務的にも非常に使い勝手がよく、人気の高い分析手段の一つです。回帰分析には2つの概念の変数が登場します。
- 目的変数Y: 説明したい、もしくは、予測したい変数(例:受注金額、受注の件数、受注確率など)
- 説明変数X: 目的変数Yを説明する、もしくは、Yの要因となる変数(例:時期、販促、顧客属性など)
回帰分析のアウトプットの一つに、目的変数Yを説明変数でXで説明する数式があります。目的変数Yに何が影響しているのかといった要因分析にも使えますし、目的変数Yの将来予測にも使えます。先に、回帰分析の概要を知りたい方は、こちら、データ分析講座(その157)回帰分析をご覧ください。
問題となる要因を捉えるために、製品やシステムの特性値を予測・推定し、どの要因がどれくらい結果に影響を与えているかを把握する回帰分析は、データを統計的に処理する方法の中で、最も適用頻度が高く、企画~製造段階と適用場面も広い手法の一つです。また、回帰分析の理論は、他の統計的手法とも密接に関わっているので、回帰分析を理解し、実際に活用できるようになることはデータ分析を実践しなければならない人にとっては必ず身につけておくべき手法の一つです。
おもりの重さとばねの伸びとの関係のように、一方の変数(目的変数)が他の変数(説明変数)によってある程度説明できるとき、これらの関係を観測データに基づきモデル化したものは回帰モデルとよばれます。回帰モデル・回帰式の中で最も基本的なものは、2つの変数間の関係が線形、すなわち直線で表される線形回帰モデルですが、線形回帰モデルでは、変数間に潜んでいる真の関係性を明らかにするには不十分な場合が多いのです。今回は、回帰分析ぐらいのシンプルで分かりやすい分析手法を使った、営業データ分析法を中心に解説します。
◆ 回帰分析:凝った営業データ分析方法ほど使えない、真実とは
「すごい営業データ分析をしているようだけど、現場では活用されていない」最近、このような愚痴を聞くことも多くなりました。営業や販売促進などのマーケティング系のデータ分析をする企業も増えているようです。しかし、営業データ分析を始めると、このような大きな壁(現場で活用されない)にぶち当たるようです。実際、データ分析で「分析そのもの」に凝りだし、すごい営業データ分析をやるほど、現場で活用されないデータ分析になってしまうことが、多いように見受けられます。どうしてでしょうか。
理由は、分析結果を実務に活かすキーになるのが「ヒト」だからです。ほぼ自動で分析しその結果をフェードンバックする、工場や機械などに組み込まれたシステムとは、根本的に違うからです。
1. 回帰分析:人は「ややこしい」と嫌がる
どんなに素晴らしいデータ分析をしても、難しそうなデータ分析をすると、ほぼ確実に現場の人は動いてくれません。現場の人に報告しても、多くの場合「ふーん」で終わってしまいます。
なぜでしょうか。理由は単純です。シンプルでないからです。シンプルとは、簡単で分かりやすいということです。直感的に分かるということです。人は、なぜそうなったのか、その「カラクリ」が分からないと、なかなか動いてくれないようです。ブラックボックス化していると嫌がります。多くの場合、厳密に理解したいわけでない。ただ、なぜそうなったのか理解したいのです。理解して、なるほどと思って腑に落ちないと、なかなか動いてはくれません。
人は「ややこしい」かったり「わけが分からない」と感じると、嫌がって動いてくれないのです。高度な営業データ分析方法を実施するほど、営業や販促の現場担当者は動いてくれません。営業データ分析をした人が、「何やら、わけの分からない分析をしているな」と思うだけです。どうすればよいのでしょうか。
2. 回帰分析 : シンプルな営業データ分析方法を使えばよい
当然といえば当然ですが、難しいのがダメなら簡単で分かりやすい営業データ分析方法を採用すればよいのです。最も簡単で分かりやすい営業データ分析方法は、棒グラフと折れ線グラフで平均値や分散などを表現することです。誰でも平均値は、なんとなく分かります。これだけだと物足りないので、分散(もしくは、標準偏差)を使って営業データ分析をしましょう。標準偏差とは、本質的には分散と同じ意味を持つものです。標準偏差を2乗すると分散になります。どちらも、データの散らばりの度合いを意味します。
では、平均値に加え、なぜ分散(もしくは、標準偏差)を見たほうがよいのでしょうか。それは、平均値だけでは情報量が少ないからです。例えば、2つの営業課で受注件数の平均値(営業1人あたりの受注件数)が同じでも、分散が大きく異なることがあります。分散の値が大きい営業課は、人によって営業成績のバラツキが大きいということです。分散の値が小さい営業課は、人によって営業成績のバラツキが小さいということです。分散の値が大きい営業課では、個人による営業成績のバラツキを小さくする努力をすればよいでしょう。営業成績の良い営業と悪い営業の違いを分析することで、解決の糸口が見えてくるかもしれません。
しかし、平均値や分散(もしくは標準偏差)だけの、簡単で分かりやすい営業データ分析方法だけでは、限界があります。例えば、受注の要因分析をしたい、売上などの将来予測をしたいなどをしたい人は多いです。しかし、平均値や分散(もしくは標準偏差)だけでは限界があります。ちょと高度だけど、直感的に分かりやすい営業データ分析方法を使うと良いでしょう。
3. 回帰分析 : 回帰分析がもっともシンプルで強力だ
受注の要因分析や、売上などの将来予測をしたい。営業データ分析に対し、このような要望が非常に多いです。受注の要因が分かれば、今後の営業販促活動に活かせます。将来予測ができれば、その結果どうなりそうかが分かります。つまり、営業データ分析した結果から、何をすべきかが分かり、その結果どうなりそうかが見えてくるのです。そこまで示してくれたら、営業や販促などの現場でも使いやすい営業データ分析の結果と言えるのではないでしょうか。
平均値や分散(もしくは標準偏差)だけでは限界がありますので、回帰分析を使うとよいでしょう。ここでは詳細には説明しませんが、回帰分析は直感的にも分かりやすい営業データ分析方法の1つです。実は、回帰分析といっても色々なバリエーションがあります。例えば、単回帰分析や重回帰分析、ロジスティック回帰分析、一般化線形モデル、ラッソ回帰分析などなど。営業データ分析の結果を使う側は、細かいバリエーションまで気を回す必要はないでしょう。回帰分析の「カラクリ」だけ理解すればよいです。
回帰分析は、要因分析や将来予測に使える優れた営業データ分析方法です。これは断言できます。使い勝手が良すぎるぐらいです。そして、何よりも、どのようなカラクリになっているのかが、きちんと説明さえすれば、どのような人もほぼ理解してくれます。実際は、ラッソ回帰分析などは、結構高度な分析手法ですが、基本的なカラクリは最も単純な回帰分析である単回帰分析と同じです。具体的に、どのようにラッソ回帰分析を使えばよいのかは、別の機会にお話しいたします。
4. 回帰分析 : 失敗する営業データ分析とは
回帰分析は、非常に歴史と実績のある分析手法です。歴史と実績があるからこそ、安心して使えます。先ほど述べたラッソ回帰も、真新しそうな気がしますが、私の知る限り昔からあります。ビッグデータブームとともに、再度注目されるようになりました。私の学生時代の20世紀からある手法です。データ分析の方法は、流行り廃りが激しく、同じものを別のネーミングで登場することも多いです。正直、そういうものに流されないのが賢明です。
2000年前半に、サポートベクターマシンやカーネル多変量解析なるものが流行りました。それ自体は、学術的に非常に意義のある分析手法かもしれませんが、営業や販促の現場で使える営業データ分析方法かといえば、そうではないかもしれません。なぜならば、サポートベクターマシンやカーネル多変量解析を使った営業データ分析方法で、収益を拡大したり安定化させた事例を知りませ...