テーマ設定とギャップ分析 データ分析講座(その199)

更新日

投稿日

 

 

データ分析・活用(データサイエンス実践)の「テーマ設定」の流れについて簡単に説明します。テーマ設定の入口は、現場の「お困りごと」(問題)です。出口は、テーマ選定マトリクスを使ったテーマ候補の評価結果です。その評価結果をもとに、優先順位付けを行い扱うテーマを選択します。テーマ設定の入口である現場の「お困りごと」(問題)を考えるとき、ギャップ分析を実施します。

今回は、「テーマ設定とギャップ分析」というお話しをします。

【目次】

1.系統図法で問題を課題化し解決策を考える流れ
2.ギャップ分析
3.理想(To-Be)と現状(As-Is)のどちらを先に考えるべき?
4.「理想(To-Be)」から考えた方がいい理由
5.ギャップと考えると問題は4タイプある
6.「原因(要因)の課題化」もギャップ分析

 

1.系統図法で問題を課題化し解決策を考える流れ

前回の復習です。前回は、「データ分析上必須な2つのロジカルシンキング」というお話をさせて頂きました。この中で、系統図法で問題を課題化し解決策を考える流れを紹介しました。

以下です。

【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討
【2】および【4】で系統図(ロジックツリー)を作り検討していきます。

【1】と【3】でギャップ分析を実施します。

今回のお話しは【1】に関するものが中心で、【3】にも若干触れます。【5】は次回お話しします。

 

2.ギャップ分析

ギャップ分析は、理想(To-Be)と現状(As-Is)の差異を捉え、そのために何をすべきかを考える課題抽出法です。通常は、定量分析というよりも定性分析に分類されます。課題抽出時に、前回お話ししたようなロジカルシンキング的な手法を使います。

 

前回お話ししましたが、「理想(To-Be)と現状(As-Is)のギャップが生まれている状態」を「問題」と定義します。

 

これをさらに「数値」でも表現しましょう。

 

データ分析

 

3.理想(To-Be)と現状(As-Is)のどちらを先に考えるべき?

たまに次のような質問を受けます。「理想(To-Be)と現状(As-Is)のどちらを先に考えるべきでしょうか?」結論は、どちらでもいいです。考えやすい方からでいいでしょう。

 

個人的には、「理想(To-Be)」から考えた方がいいと感じています。なぜでしょうか?

 

4.「理想(To-Be)」から考えた方がいい理由

精神的な理由で、「現状(As-Is)」から考えると心が暗くなり、しかもその後に考える「理想(To-Be)」が小さくなります。なので、現状無視で夢見る感じで「理想(To-Be)」を考え、心晴れやかな状態で「現状(As-Is)」を考えるのがいいです。

 

5.ギャップと考えると問題は4タイプある

 

データ分析

 

現場の「お困りごと」(問題)と言っても、今現在の「問題」だけでなく、今後起こるかもしれない「問題」も対象に入ります。さらに、ネガティブな状態を解消する「問題」だけでなく、ネガティブな状態ではないけれど、よりポジティブな状態にすべきことも「問題」と考えます。したがって、「問題」は大きく次の4つに分類されます。

 

6.「原因(要因)の課題化」もギャップ分析

先ほど、【3】の「原因(要因)の課題化」もギャップ分析であることに言及しました。前回もお話ししましたが、【3】の「原因(要因)の課題化」のギャップ分析も、基本は理想(To-Be)と現状(As-Is)の差異を考えます。

 

【1】の「お困りごと(問題)の設定」のギャップ分析で「問題」を定義し、【2】の「問題の要因(原因)の洗い出し」でロジカ...

 

 

データ分析・活用(データサイエンス実践)の「テーマ設定」の流れについて簡単に説明します。テーマ設定の入口は、現場の「お困りごと」(問題)です。出口は、テーマ選定マトリクスを使ったテーマ候補の評価結果です。その評価結果をもとに、優先順位付けを行い扱うテーマを選択します。テーマ設定の入口である現場の「お困りごと」(問題)を考えるとき、ギャップ分析を実施します。

今回は、「テーマ設定とギャップ分析」というお話しをします。

【目次】

1.系統図法で問題を課題化し解決策を考える流れ
2.ギャップ分析
3.理想(To-Be)と現状(As-Is)のどちらを先に考えるべき?
4.「理想(To-Be)」から考えた方がいい理由
5.ギャップと考えると問題は4タイプある
6.「原因(要因)の課題化」もギャップ分析

 

1.系統図法で問題を課題化し解決策を考える流れ

前回の復習です。前回は、「データ分析上必須な2つのロジカルシンキング」というお話をさせて頂きました。この中で、系統図法で問題を課題化し解決策を考える流れを紹介しました。

以下です。

【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討
【2】および【4】で系統図(ロジックツリー)を作り検討していきます。

【1】と【3】でギャップ分析を実施します。

今回のお話しは【1】に関するものが中心で、【3】にも若干触れます。【5】は次回お話しします。

 

2.ギャップ分析

ギャップ分析は、理想(To-Be)と現状(As-Is)の差異を捉え、そのために何をすべきかを考える課題抽出法です。通常は、定量分析というよりも定性分析に分類されます。課題抽出時に、前回お話ししたようなロジカルシンキング的な手法を使います。

 

前回お話ししましたが、「理想(To-Be)と現状(As-Is)のギャップが生まれている状態」を「問題」と定義します。

 

これをさらに「数値」でも表現しましょう。

 

データ分析

 

3.理想(To-Be)と現状(As-Is)のどちらを先に考えるべき?

たまに次のような質問を受けます。「理想(To-Be)と現状(As-Is)のどちらを先に考えるべきでしょうか?」結論は、どちらでもいいです。考えやすい方からでいいでしょう。

 

個人的には、「理想(To-Be)」から考えた方がいいと感じています。なぜでしょうか?

 

4.「理想(To-Be)」から考えた方がいい理由

精神的な理由で、「現状(As-Is)」から考えると心が暗くなり、しかもその後に考える「理想(To-Be)」が小さくなります。なので、現状無視で夢見る感じで「理想(To-Be)」を考え、心晴れやかな状態で「現状(As-Is)」を考えるのがいいです。

 

5.ギャップと考えると問題は4タイプある

 

データ分析

 

現場の「お困りごと」(問題)と言っても、今現在の「問題」だけでなく、今後起こるかもしれない「問題」も対象に入ります。さらに、ネガティブな状態を解消する「問題」だけでなく、ネガティブな状態ではないけれど、よりポジティブな状態にすべきことも「問題」と考えます。したがって、「問題」は大きく次の4つに分類されます。

 

6.「原因(要因)の課題化」もギャップ分析

先ほど、【3】の「原因(要因)の課題化」もギャップ分析であることに言及しました。前回もお話ししましたが、【3】の「原因(要因)の課題化」のギャップ分析も、基本は理想(To-Be)と現状(As-Is)の差異を考えます。

 

【1】の「お困りごと(問題)の設定」のギャップ分析で「問題」を定義し、【2】の「問題の要因(原因)の洗い出し」でロジカルシンキングで原因を炙りだします。

 

データ分析

 

炙り出された「原因」が、「現状(As-Is)」になります。この「原因」に対処し「より良い状態」にするのが「課題」です。この「より良い状態」が「理想(To-Be)」です。

 

データ分析

 

「理想(To-Be)と現状(As-Is)のギャップが生まれている状態」が「課題」になります。「現状(As-Is)」のままであれば、課題にならないということです。実際に、ほったらかしにする原因や、どうしようもない原因は、課題になりません。ちなみに、【3】の「原因(要因)の課題化」のギャップ分析は、「現状(As-Is)」が既に明確になった状態で実施します。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
ビジネスデータ分析は因果関係を知りたい データ分析講座(その73)

◆ 結局のところ、ビジネスデータ分析は因果関係を知りたい  ここ数年、統計学系のモデルよりも機械学習系のモデルに注目が集まっているように感じられます...

◆ 結局のところ、ビジネスデータ分析は因果関係を知りたい  ここ数年、統計学系のモデルよりも機械学習系のモデルに注目が集まっているように感じられます...


見積システムによるDX(その1)

  【目次】 1.アナログ情報をデジタル化 2.プロセス全体をデジタル化 3.価値の創造と利益の拡大   ここ...

  【目次】 1.アナログ情報をデジタル化 2.プロセス全体をデジタル化 3.価値の創造と利益の拡大   ここ...


変化に適応し柔軟に動くための運用サイクルとは データ分析講座(その28)

◆ OODAループとデータ分析  営業やマーケティングの現場で、変化に適応し柔軟に「動くため」の運用サイクルがあります。OODA(Observe-O...

◆ OODAループとデータ分析  営業やマーケティングの現場で、変化に適応し柔軟に「動くため」の運用サイクルがあります。OODA(Observe-O...


「情報マネジメント一般」の活用事例

もっと見る
P値で行う統計リテラシー判定

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...


電子メール、簡潔過ぎると逆効果

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...


現場情報の自動収集に道具だてを

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...