データ活用で肝となるモデルとは データ分析講座(その133)

更新日

投稿日

データ分析

◆ データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない

 モデルと聞くと何を思い浮かべるでしょうか。データサイエンスなどに馴染みのある方であれば、予測モデルや異常検知などの数理モデルなどを思い浮かべることでしょう。データサイエンスを実践する時、つまりデータ分析を実務で活用する際は予測モデルや異常検知などの数理モデル以外のモデルも必要になります。今回は「データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない」というお話しをします。

1、モデル

 データサイエンスなどに馴染みのない方であれば、ファッションモデルやプラモデルを思い浮かべる人も多いと思います。他にもデータモデルやビジネスモデル、プロセスモデルなど、モデルと名の付くものが世の中には多々あります。

(1) モデルの辞書的な意味

 辞書を引いてみるとモデルの意味は、次のようになっています。

  • 模範、手本または標準となるもの。また、今後の範とするために試みられたもの。
  • 模型、また、展示用の見本。
  • ある事象について、諸要素とそれら相互の関係を定式化して表したもの。
  • 美術家・写真家が制作の対象とする人や物。
  • 小説・戯曲などの題材となった実在の人や事件。
  • 機械・自動車などの型式。型。 引用元:デジタル大辞泉

 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

  • 自動車や機械などの型式。
  • 模型。 
  • 商品や事柄の標準となるもの。模範。手本。見本。
  • 画家・彫刻家・写真家などが、製作のとき対象として使う人物。 
  • 小説・戯曲などに描かれる人物の素材になった実在の人。
  • 問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。 引用元:大辞林 第三版

(2) データサイエンス実践(ビジネス活用)的なモデルの定義

 データサイエンスを実践する時、つまりデータ分析を実務で活用するときのモデルはデジタル大辞泉であれば:ある事象について、諸要素とそれら相互の関係を定式化して表したもの。大辞林 第三版であれば:問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。に近いのです。

 個人的には、以下の定義が一番しっくりきます。

 モデルとはある人間にとってのある状況、あるいは状況についての概念(idea) の明示的な解釈(explicit interpretation) である。モデルは数式、記号、あるいは言葉で表すことができるが本質的には、実体、プロセス、属性、およびそれらの関係についての記述(description)である。
引用元:Brian Wilson 著・根来 竜之監訳「システム仕様の分析学―ソフトシステム方法論― 」共立出版(1996年1月)
 私なりに表現すると「モデルとは現実世界を模したもので、何かしらの記号(数式や図など)で表現されたもの」となります。

 ポイントは現実世界を模したもの、記号(数式や図など)で表現されたものです。

2、数理モデル

 例えば、統計解析や機械学習などで登場する数理モデルは、数式という記号でモデルを表現しています。数式で表現された数理モデルは、あくまでも現実世界を模したもので、本物ではありません。したがって「数理モデルとは、現実世界を模したもので、数式という記号で表現されたもの」となります。

(1) 数理モデル以外のモデルには何があるのか

 データサイエンス実践(ビジネス活用)という立ち位置で考えると、数理モデル以外にも必要となるモデルがあります。例えばプロセスモデル(分析プロセスや活用プロセスなど)、モックアップ(レポートやダッシュボードの雛形)、データモデル(DBの雛形)、ビジネスモデル(収益を上げるための仕組みなど)あたりでしょうか。共通しているのは表現する時に数式化や図式化したり、何かしらの記号で表現することでしょう。当然ですが、現実世界そのものではなく、あくまでも現実世界を単純化し模倣したものです。

(2) 2種類のモデル

 モデルには大きく2種類あります。

  • 今現在の現実世界を表現した「As-Isモデル」(典型モデルや近似モデル)
  • こうあるべき現実世界を表現した「To-Beモデル」(理想モデルや規範モデル)

 例えば今現在の業務フローを図示化すれば、それは「As-Isモデル」型のプロセスモデルで、あるべき業務フローを図示化すれ...

データ分析

◆ データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない

 モデルと聞くと何を思い浮かべるでしょうか。データサイエンスなどに馴染みのある方であれば、予測モデルや異常検知などの数理モデルなどを思い浮かべることでしょう。データサイエンスを実践する時、つまりデータ分析を実務で活用する際は予測モデルや異常検知などの数理モデル以外のモデルも必要になります。今回は「データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない」というお話しをします。

1、モデル

 データサイエンスなどに馴染みのない方であれば、ファッションモデルやプラモデルを思い浮かべる人も多いと思います。他にもデータモデルやビジネスモデル、プロセスモデルなど、モデルと名の付くものが世の中には多々あります。

(1) モデルの辞書的な意味

 辞書を引いてみるとモデルの意味は、次のようになっています。

  • 模範、手本または標準となるもの。また、今後の範とするために試みられたもの。
  • 模型、また、展示用の見本。
  • ある事象について、諸要素とそれら相互の関係を定式化して表したもの。
  • 美術家・写真家が制作の対象とする人や物。
  • 小説・戯曲などの題材となった実在の人や事件。
  • 機械・自動車などの型式。型。 引用元:デジタル大辞泉

 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

  • 自動車や機械などの型式。
  • 模型。 
  • 商品や事柄の標準となるもの。模範。手本。見本。
  • 画家・彫刻家・写真家などが、製作のとき対象として使う人物。 
  • 小説・戯曲などに描かれる人物の素材になった実在の人。
  • 問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。 引用元:大辞林 第三版

(2) データサイエンス実践(ビジネス活用)的なモデルの定義

 データサイエンスを実践する時、つまりデータ分析を実務で活用するときのモデルはデジタル大辞泉であれば:ある事象について、諸要素とそれら相互の関係を定式化して表したもの。大辞林 第三版であれば:問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。に近いのです。

 個人的には、以下の定義が一番しっくりきます。

 モデルとはある人間にとってのある状況、あるいは状況についての概念(idea) の明示的な解釈(explicit interpretation) である。モデルは数式、記号、あるいは言葉で表すことができるが本質的には、実体、プロセス、属性、およびそれらの関係についての記述(description)である。
引用元:Brian Wilson 著・根来 竜之監訳「システム仕様の分析学―ソフトシステム方法論― 」共立出版(1996年1月)
 私なりに表現すると「モデルとは現実世界を模したもので、何かしらの記号(数式や図など)で表現されたもの」となります。

 ポイントは現実世界を模したもの、記号(数式や図など)で表現されたものです。

2、数理モデル

 例えば、統計解析や機械学習などで登場する数理モデルは、数式という記号でモデルを表現しています。数式で表現された数理モデルは、あくまでも現実世界を模したもので、本物ではありません。したがって「数理モデルとは、現実世界を模したもので、数式という記号で表現されたもの」となります。

(1) 数理モデル以外のモデルには何があるのか

 データサイエンス実践(ビジネス活用)という立ち位置で考えると、数理モデル以外にも必要となるモデルがあります。例えばプロセスモデル(分析プロセスや活用プロセスなど)、モックアップ(レポートやダッシュボードの雛形)、データモデル(DBの雛形)、ビジネスモデル(収益を上げるための仕組みなど)あたりでしょうか。共通しているのは表現する時に数式化や図式化したり、何かしらの記号で表現することでしょう。当然ですが、現実世界そのものではなく、あくまでも現実世界を単純化し模倣したものです。

(2) 2種類のモデル

 モデルには大きく2種類あります。

  • 今現在の現実世界を表現した「As-Isモデル」(典型モデルや近似モデル)
  • こうあるべき現実世界を表現した「To-Beモデル」(理想モデルや規範モデル)

 例えば今現在の業務フローを図示化すれば、それは「As-Isモデル」型のプロセスモデルで、あるべき業務フローを図示化すれば、それは「To-Beモデル」型のプロセスモデルになります。どちらも現実世界を模したもので、意味づけ(理想か現状か)が異なるだけです。

3、今回のまとめ

 今回は「データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない」というお話しをしました。どうしても、データサイエンスやデータ分析、機械学習というものに慣れ親しんでくると、モデルと聞くと数理モデルをイメージしてしまい、世間とズレてきます。モデルという概念には色々な意味があり、数理モデルだけがモデルではありません。

 ファッションモデルやプラモデルもモデルです。データサイエンス実践(ビジネス活用)という立ち位置で考えるとどうでしょうか?データサイエンスやデータ分析、機械学習などを活用しようとする時、数理モデルだけが必要なのではありません。他のモデルも必要になります。

 モデルとは現実世界を模したもので、何かしらの記号(数式や図など)で表現されたものです。データサイエンス実践(ビジネス活用)を考えた時、構築すべきモデルに抜け漏れがないか、確認してみることをお勧めします。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
グラフを眺めただけの判断は要注意 データ分析講座(その156)

  ◆ 超簡略版「統計的仮説検定」  ある小売チェーンの例です。例えば、次のような状況はよくあります。 対前年比で売り上げはどうだ...

  ◆ 超簡略版「統計的仮説検定」  ある小売チェーンの例です。例えば、次のような状況はよくあります。 対前年比で売り上げはどうだ...


立場によって意味合いが異なる見える化 データ分析講座(その126)

◆ 「データによる見える化」で見たいものが異なる人々  データ分析・活用の第一歩として「見える化」というキーワードがあります。まずはデータを収集し現...

◆ 「データによる見える化」で見たいものが異なる人々  データ分析・活用の第一歩として「見える化」というキーワードがあります。まずはデータを収集し現...


新規顧客のターゲット選定 データ分析講座(その88)

◆ 受注履歴から探る新規顧客ターゲット選定のためのデータ分析  受注に関するデータはどのような会社にもある価値のあるデータです。これがなければ売上が...

◆ 受注履歴から探る新規顧客ターゲット選定のためのデータ分析  受注に関するデータはどのような会社にもある価値のあるデータです。これがなければ売上が...


「情報マネジメント一般」の活用事例

もっと見る
人的資源マネジメント:データ指向ものづくりがもたらす高い生産性

 今、ものづくりの現場が目指すべきは「データ指向ものづくり」だと思います。 今回は、インダストリー4.0のような次世代ものづくりの大波への備えともなる 「...

 今、ものづくりの現場が目指すべきは「データ指向ものづくり」だと思います。 今回は、インダストリー4.0のような次世代ものづくりの大波への備えともなる 「...


ソーシャルメディアデータの解析事例:異分野研究から得られる共通した目的とは

 2020年、コロナウィルス感染の問題が大きくなり始めた頃、少人数の開催ということで、ソーシャルメディアデータ解析を専門にされている先生の講演会を聞く...

 2020年、コロナウィルス感染の問題が大きくなり始めた頃、少人数の開催ということで、ソーシャルメディアデータ解析を専門にされている先生の講演会を聞く...


‐情報収集で配慮すべき事項(第2回)‐  製品・技術開発力強化策の事例(その10)

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...