カテゴリー構築指数とブランド構築指数 データ分析講座(その257)

投稿日

情報マネジメント

 

自社商品やサービスが、どの顧客セグメントに対し強いのか弱いのか、ポテンシャルが高いのか低いのかを示す指標が構築指標で、次の2種類があります。

  • カテゴリー構築指数
  • ブランド構築指数

計算式はどちらも簡単です。1顧客あたりの販売金額(もしくは数量)を計算し求めます。今回は「ターゲットの強弱を浮かび上がらせるカテゴリー構築指数とブランド構築指数」というお話しをします。ちなみに今回は、販売金額ベースで説明を進めます。

 

【目次】
1. カテゴリー構築指数
2. ブランド構築指数
3. カテゴリー構築指数×ブランド構築指数

【この連載の前回:データ分析講座(その256)3つの市場シェアとはへのリンク】

 

1. カテゴリー構築指数

先ず、ある商品カテゴリー(例:1mlの紙パック牛乳)の1消費者(もしくは1世帯)あたりの販売金額を計算します。この値がベースになります。

 

次に、ある顧客セグメント(例:首都圏に住む30代独身男性)に対し同様に、その商品カテゴリー(例:1mlの紙パック牛乳)の1消費者(もしくは1世帯)あたりの販売金額(もしくは数量)を計算します。現在、手元にある計算結果は以下の2つです。

  • 全体の1消費者(もしくは1世帯)あたりの販売金額
  • 顧客セグメント別の1消費者(もしくは1世帯)あたりの販売金額

この1消費者(もしくは1世帯)あたりの販売金額の比を指標化したのが、カテゴリー構築指数です。顧客セグメントAのカテゴリー構築指数は以下となります。

 

情報マネジメント

 

この指標の値は大きいほど、その顧客セグメントに対しそのカテゴリーが強い、ということになります。当然ですが、1以上でないと強いとはなりません。例えば、1mlの紙パック牛乳の1世帯あたりの購入本数を、日本全体と東京都練馬区で比較する、日本全体と小学生のいる世帯で比較する、日本全体と1人暮らしの成人世帯と比較する、といった感じです。

 

2. ブランド構築指数

ブランド構築指数は、カテゴリー構築指数と計算方法はほぼ同じです。

 

違いは、カテゴリーではなく、ブランドで考えているところです。計算時に対象とするブランドは、通常自社ブランドのため、分析の軸足が自社になります。

  • カテゴリー構築指数:分析の軸足が市場
  • ブランド構築指数:分析の軸足が自社

では簡単に説明します。

 

先ず、あるブランド(例:なっちゃん)の1消費者(もしくは1世帯)あたりの販売金額を計算します。この値がベースになります。次に、ある顧客セグメント(例:首都圏に住む小学生のいる世帯)に対し同様に、そのブランド(例:なっちゃん)の1消費者(もしくは1世帯)あたりの販売金額(もしくは数量)を計算します。現在、手元にある計算結果は以下の2つです。

  • ブランド全体の1消費者(もしくは1世帯)あたりの販売金額
  • 顧客セグメント別の1消費者(もしくは1世帯)あたりの販売金額

この1消費者あたりの販売金額の比を指標化したのが、ブランド構築指数です。顧客セグメントAのブランド構築指数は以下となります。

 

情報マネジメント

 

この指標の値は大きいほど、その顧客セグメントに対しそのブランドが強い、ということになります。当然ですが、1以上でないと強いとはなりません。

 

3. カテゴリー構築指数×ブランド構築指数

カテゴリー構築指数とブランド構築指数は、単体で利用すると、市場におけるそのカテゴリーやブランドの強み弱みを発見できますが、掛け合わせてマトリクス化して活用すると、より幅が広がります。

 

情報マネジメント

 

掛け合わせることで、例えば、あるエリアでカテゴリー構築指数が高いのに、そのカテゴリーに属する自社ブランドのブランド構築指数が低い、ということが分かったりします。なぜ、他社に遅れを取っているのかを、考えるきっかけになります。カテゴリー構築指数とブランド構築指数は、単体でモニタリングするだけでなく、カテゴリー構築指数×ブランド構築指数のマトリクスの中でどのように変化するのかモニタリングするといいでしょう。

 

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

 


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ分析・活用のテーマ データ分析講座(その176)

  ◆ データ分析・活用テーマ、上からのテーマと下からのテーマ  データサイエンスを実践するときのテーマ、要はデータ分析・活用のテーマで...

  ◆ データ分析・活用テーマ、上からのテーマと下からのテーマ  データサイエンスを実践するときのテーマ、要はデータ分析・活用のテーマで...


分析データの粒度はより細かく データ分析講座(その164)

  ◆ 分析は最終的かつ不可逆的なもの  蓄積され続けてはいるけど、人手にあまり触れられていないデータの中には、データの粒度がバラバラな...

  ◆ 分析は最終的かつ不可逆的なもの  蓄積され続けてはいるけど、人手にあまり触れられていないデータの中には、データの粒度がバラバラな...


PDCAサイクルとOODAループ データ分析講座(その27)

◆ データ活用の現場を躍動させるOODAループ  営業やマーケティングなどでデータ活用をするとき、PDCA(Plan-Do-Check-Act、計画...

◆ データ活用の現場を躍動させるOODAループ  営業やマーケティングなどでデータ活用をするとき、PDCA(Plan-Do-Check-Act、計画...


「情報マネジメント一般」の活用事例

もっと見る
守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...


デジタルデータの保存とは

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...


システムトラブル、誰に相談したら良いか

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...