グロスデータと、データ分析結果の関係とは データ分析講座(その61)

更新日

投稿日

情報マネジメント

◆ 売上分析でやること、グロスのデータを眺め、あることに気づくこと

 営業もマーケティングも、データ分析をするぞ! と考えたとき、最初に手を付けるべきことがあります。

 それは、グロスの売上データを時系列に並べ、グラフ化などをして眺めることです。グロスとは全体という意味で、会社全体の売上とか、扱っている商品全体の売上とか、所属している部署全体の売上とかです。そんなこと当たり前だろ! と思いがちですが、意外とできていないようです。

 今回は、やっていそうで十分にできていない、売上分析で先ずやるべき、グロスのデータを眺めてみる、ということについてお話しいたします。どうも売上分析しているのに、売上に貢献していないなと感じられていましたら、一つのきっかけになるかもしれません。

1. グロスのデータを眺めているようで、眺めていない

 グロスとは、全体という意味です。何を全体とするかで、変わってきます。

 全体を、会社とするのか、自分の扱っている商品とするのか、自分の所属する部署とするのか、で変わってきます。何を全体とするかは、人それぞれですが、意外とグロスのデータを、見ているようで見ていないように感じています。

 過去に何社かデータ活用のお手伝いをさせて頂きました。そのとき最初にやるのが、グロスのデータ(例:売上など)を眺めることです。グロスのデータを眺めただけで、色々なことが見えてきます。例えば

  • データがどの程度キレイか?
  • データに異常値はないか?
  • 使えそうなデータはいつからか?

 データ分析上、「使えそうなデータはいつからか?」を決めるために、グロスのデータを眺めます。そのため、「データがどの程度キレイか?」と「データに異常値はないか?」という視点で徹底的に見ていきます。そして、すでにデータ分析している企業の場合、「このデータを使って、よく今まで分析していたなぁ~」と私自身驚きます。汚いデータのままデータ分析をしている企業が、結構多いようです。

 実は、グロスのデータを眺めることは、「データ分析そのもの」だけでなく、その先のデータ分析の活用上いい効果があります。データ活用上のビジネス理解が深まるからです。

2. データ活用上のビジネス理解が深まる

 グロスのデータを眺めることで、データ活用上のビジネス理解が深まります。

 丁寧に、売上などのグロスのデータを眺めると、通常では考えられない動きをしていたり、明らかに可笑しな跳ね方や落ち方をしているデータが発見されます。場合によっては、データが欠測(データが取得できていない)している場合もあります。

 なぜ、売上などのグロスのデータが通常では考えられない動きをするのかは、データからは分かりません。そのとき、現場の人にヒアリングするしかありません。そうすることで、データ活用上のビジネス理解が深まっていきます。

 データは、最近たくさん蓄積されるようになるといっても、まだまだほんの一部です。データからすべてが分かるほど、世の中にはデータは蓄積されていません。データだけで分からないことは、そのデータに近しい現場が知っています。グロスのデータを眺め、変だなと思う個所は現場などに聞きに行く。その聞きに行くきっかけになるのです。

3. 異常スコア(もしくは、外れ値スコア)

 売上などのデータをパッと見ただけで、可笑しな箇所を発見することもあれば、そうでない場合もあります。見るべきデータがたくさんあると、ウンザリします。

 データが欠測していれば分かりやすいですが、データがきちんと測定されている場合、そもそも、どのくらい逸脱したデータであれば可笑しいのか、判断に迷うこともあるでしょう。
そのようなときは、よく異常スコア(もしくは、外れ値スコア)という指標を使います。データの異常の度合いです。

 例えば、ある統計モデルの残差を使い、異常スコア(もしくは、外れ値スコア)を算出します。ここでは詳しい話は割愛しますが、異常スコア(もしくは、外れ値スコア)は簡単に求めることができます。

 つまり、売上などのグロスのデータを見るとき、ローデータをざっと眺めたりグラフ化し眺めるとともに、異常スコア(もしくは、外れ値スコア)をざっと眺めたりグラフ化し眺めるとよいでしょう。ある統計学的な閾値を設定し、Excelなどでそこだけデータに色を付けて分かりやすくするのもよいでしょう。これだけで結構な割合で、データの可笑しな箇所を発見できます。

4. データクレンジングが甘いと成果が出にくい

 このような、異常スコア(もしくは、外れ値スコア)を使ったやり方は、データ分析のデータ整備上、非常に重要になってきます。

 そもそも、分析で使うデータが汚いとろくな目にあいません。データ分析結果の良し悪しは、利用したデータに大きく依存します。より良いデータ分析結果を出したいなら、利用するデータもより綺麗なデータがよいでしょう。そのデータを綺麗にするために、異常スコア(もしくは、外れ値スコア)は非常に重要になってきます。

 異常スコア(もしくは、外れ値スコア)をもとに、データの可笑しな箇所を発見したら、データ分析する上で次にすべきは、データのクレンジングです。つまり、データを綺麗にし分析で使っても問題ないようにします。

 しかし、クレンジングできないような場合もあります。それでも構いません。そのクレンジングできない問題を抱えたまま、データ分析をし、後...

情報マネジメント

◆ 売上分析でやること、グロスのデータを眺め、あることに気づくこと

 営業もマーケティングも、データ分析をするぞ! と考えたとき、最初に手を付けるべきことがあります。

 それは、グロスの売上データを時系列に並べ、グラフ化などをして眺めることです。グロスとは全体という意味で、会社全体の売上とか、扱っている商品全体の売上とか、所属している部署全体の売上とかです。そんなこと当たり前だろ! と思いがちですが、意外とできていないようです。

 今回は、やっていそうで十分にできていない、売上分析で先ずやるべき、グロスのデータを眺めてみる、ということについてお話しいたします。どうも売上分析しているのに、売上に貢献していないなと感じられていましたら、一つのきっかけになるかもしれません。

1. グロスのデータを眺めているようで、眺めていない

 グロスとは、全体という意味です。何を全体とするかで、変わってきます。

 全体を、会社とするのか、自分の扱っている商品とするのか、自分の所属する部署とするのか、で変わってきます。何を全体とするかは、人それぞれですが、意外とグロスのデータを、見ているようで見ていないように感じています。

 過去に何社かデータ活用のお手伝いをさせて頂きました。そのとき最初にやるのが、グロスのデータ(例:売上など)を眺めることです。グロスのデータを眺めただけで、色々なことが見えてきます。例えば

  • データがどの程度キレイか?
  • データに異常値はないか?
  • 使えそうなデータはいつからか?

 データ分析上、「使えそうなデータはいつからか?」を決めるために、グロスのデータを眺めます。そのため、「データがどの程度キレイか?」と「データに異常値はないか?」という視点で徹底的に見ていきます。そして、すでにデータ分析している企業の場合、「このデータを使って、よく今まで分析していたなぁ~」と私自身驚きます。汚いデータのままデータ分析をしている企業が、結構多いようです。

 実は、グロスのデータを眺めることは、「データ分析そのもの」だけでなく、その先のデータ分析の活用上いい効果があります。データ活用上のビジネス理解が深まるからです。

2. データ活用上のビジネス理解が深まる

 グロスのデータを眺めることで、データ活用上のビジネス理解が深まります。

 丁寧に、売上などのグロスのデータを眺めると、通常では考えられない動きをしていたり、明らかに可笑しな跳ね方や落ち方をしているデータが発見されます。場合によっては、データが欠測(データが取得できていない)している場合もあります。

 なぜ、売上などのグロスのデータが通常では考えられない動きをするのかは、データからは分かりません。そのとき、現場の人にヒアリングするしかありません。そうすることで、データ活用上のビジネス理解が深まっていきます。

 データは、最近たくさん蓄積されるようになるといっても、まだまだほんの一部です。データからすべてが分かるほど、世の中にはデータは蓄積されていません。データだけで分からないことは、そのデータに近しい現場が知っています。グロスのデータを眺め、変だなと思う個所は現場などに聞きに行く。その聞きに行くきっかけになるのです。

3. 異常スコア(もしくは、外れ値スコア)

 売上などのデータをパッと見ただけで、可笑しな箇所を発見することもあれば、そうでない場合もあります。見るべきデータがたくさんあると、ウンザリします。

 データが欠測していれば分かりやすいですが、データがきちんと測定されている場合、そもそも、どのくらい逸脱したデータであれば可笑しいのか、判断に迷うこともあるでしょう。
そのようなときは、よく異常スコア(もしくは、外れ値スコア)という指標を使います。データの異常の度合いです。

 例えば、ある統計モデルの残差を使い、異常スコア(もしくは、外れ値スコア)を算出します。ここでは詳しい話は割愛しますが、異常スコア(もしくは、外れ値スコア)は簡単に求めることができます。

 つまり、売上などのグロスのデータを見るとき、ローデータをざっと眺めたりグラフ化し眺めるとともに、異常スコア(もしくは、外れ値スコア)をざっと眺めたりグラフ化し眺めるとよいでしょう。ある統計学的な閾値を設定し、Excelなどでそこだけデータに色を付けて分かりやすくするのもよいでしょう。これだけで結構な割合で、データの可笑しな箇所を発見できます。

4. データクレンジングが甘いと成果が出にくい

 このような、異常スコア(もしくは、外れ値スコア)を使ったやり方は、データ分析のデータ整備上、非常に重要になってきます。

 そもそも、分析で使うデータが汚いとろくな目にあいません。データ分析結果の良し悪しは、利用したデータに大きく依存します。より良いデータ分析結果を出したいなら、利用するデータもより綺麗なデータがよいでしょう。そのデータを綺麗にするために、異常スコア(もしくは、外れ値スコア)は非常に重要になってきます。

 異常スコア(もしくは、外れ値スコア)をもとに、データの可笑しな箇所を発見したら、データ分析する上で次にすべきは、データのクレンジングです。つまり、データを綺麗にし分析で使っても問題ないようにします。

 しかし、クレンジングできないような場合もあります。それでも構いません。そのクレンジングできない問題を抱えたまま、データ分析をし、後はデータ分析結果の解釈でカバーします。要するに、異常スコア(もしくは、外れ値スコア)を使いグロスのデータを眺め、可笑しな箇所を発見することは、データのビジネス活用上も、データ分析上も、どちらにとっても非常に有意義なことなのです。

5. グロスデータと、データ分析結果の関係のまとめ

 今回は、「売上分析で先ずやること、それはグロスのデータを眺め、あることに気づくこと」というお話しをしました。データ分析をする前、誰もがやることと言えば、ローデータのグロスをグラフ化したりし眺めることだと思います。しかし、データ分析もしくはその活用が上手くいっていない場合、その誰もがやることが、甘かったりします。

 ちなみにグロスとは全体という意味で、何を全体とするかで見えてくるものは変わってきます。全体を、会社とするのか、自分の扱っている商品とするのか、自分の所属する部署とするのか、で変わってきます。そのグロスのデータを眺めることで、データ分析結果の精度がよくなる。データ分析結果のビジネス活用が良い方向に向く。という恩恵があります。どうも売上分析しているのに、売上に貢献していないなと感じられていましたら、ぜひ試してみてください。データ分析のビジネス活用が進展する、一つのきっかけになるかもしれません。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ活用する現場のお困りごととは データ分析講座(その180)

  ◆ お困りごとをユーザ視点へ転換しデータ分析・活用に邁進しよう!  データ分析・活用(データサイエンス実践)をするとき、「お困りごと...

  ◆ お困りごとをユーザ視点へ転換しデータ分析・活用に邁進しよう!  データ分析・活用(データサイエンス実践)をするとき、「お困りごと...


統計手法で役立つ、エクセル関数の整理

 PCを買うとMSオフィスが標準で入ってる場合が多いですし、ビジネス分野でも標準になっていることは、ご承知の通りです。仕事でエクセルを使う方はかなり多いと...

 PCを買うとMSオフィスが標準で入ってる場合が多いですし、ビジネス分野でも標準になっていることは、ご承知の通りです。仕事でエクセルを使う方はかなり多いと...


中小製造業のDXへの取り組み(その1)

【中小製造業のDXへの取り組み 連載へのリンク】 1、中小製造業の2つの事業パターン 2、受託製造サービス業へ脱皮する 3、経済産業省DX Se...

【中小製造業のDXへの取り組み 連載へのリンク】 1、中小製造業の2つの事業パターン 2、受託製造サービス業へ脱皮する 3、経済産業省DX Se...


「情報マネジメント一般」の活用事例

もっと見る
情報システム導入企業の悩みとは

        今回は、次の事例から、自社の生産システムにあった生産管理ソフトの選択をどうすべきかを解説します。   1. 想定事例  電...

        今回は、次の事例から、自社の生産システムにあった生産管理ソフトの選択をどうすべきかを解説します。   1. 想定事例  電...


レストランでのタブレット端末

        最近、テーブルにタブレット端末を置くレストランが増えています。レストラン利用者としては、ウェ...

        最近、テーブルにタブレット端末を置くレストランが増えています。レストラン利用者としては、ウェ...


人的資源マネジメント:製品開発の滞留を引き起こすファイルとは(その2)

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...