データ活用をする企業や組織などが増えていますが、データ活用には、即効性があるものもあれば、そうでないものもあります。即効性がありそうなデータ活用でも、しばらく様子を見たほうがいいものもあります。今回は「データ活用の成果にはタイムラグがある、と思ったほうがいいかもしれない」というお話しをします。
【目次】
1. 成果にラグがあるとは?
2. 成果がでてくる時期と、成果のデータを蓄積する期間
3. 継続力
4. 改善力
【この連載の前回:(その292)分析成果を上手く説明できていますか へのリンク】
1. 成果にラグがあるとは?
ここで言うラグ(lag)とは、データ活用をしてから、その成果が確認されるまでの遅延時間(delay time)のことです。データ活用の成果が出てくるまでには、必ずラグがあります。ラグの長さも様々で、ほぼリアルタイムに成果を確認できるものもあれば、数か月後でないと成果を確認できないものもあります。
ほぼリアルタイムに成果を確認できるデータ活用であっても、そのデータ活用の良し悪しを即断即決するのは危ういです。ある程度の期間を儲け、成果に関するデータを収集し判断したほうがいいでしょう。なぜならば、たまたま良かった悪かった、という事があるからです。
2. 成果がでてくる時期と、成果のデータを蓄積する期間
要するに、データ活用するときには、以下の2点の時間を明確にしておく必要があるでしょう。
- 成果がでてくる時期
- 成果のデータを蓄積する期間
例えば、成果がでてくる時期がデータ活用開始後6か月後で、成果のデータを蓄積する期間を12か月間と設定したら、そのデータ活用の良し悪しを判断するには、データ開始後1年半後になるということです。例えば、成果がでてくる時期がデータ活用開始後即日で、成果のデータを蓄積する期間を1日間と設定したら、そのデータ活用の良し悪しを判断するには、データ開始後1日後になるということです。前者の例として営業リスト(受注確度や受注金額の予測値をもとに作成)、後者の例としてWebサイトなどのABテスト(デザインのA案とB案どちらがいいのかをサイト上でテスト)などです。
3. 継続力
データ活用で成果を出せるかどうかは、継続力が重要なポイントになります。
何事もそうですが、成果を出せるまで継続できるかどうかが、成功の大きな条件の1つと言えるでしょう。先ほども言いましたが、データ活用の成果が出てくるまでには、必ずラグがあります。少なくとも、成果がでてくる時期まで継続しないと、そのデータ活用の良し悪しを判断することはできません。そして、成果がでてくる時期まで継続したとしても、その良し悪しを判断するためのデータが蓄積する前に止めてしまったら、当然ながら良し悪しの判断を適切にすることもできません。
4. 改善力
継続することが重要だと言っても、だらだら継続してもいけません。改善しながら継続していくことが重...