データサイエンティストを支える人財とは データ分析講座(その118)

更新日

投稿日

情報マネジメント

◆ データサイエンティストの最高の相棒はデータエンジニア

 ビジネスの世界に生きるデータサイエンティストの仕事とは、データとその活用領域であるドメインを結びつけることです。ドメインとは、営業やマーケティング、生産、経営などのデータを活用する現場のことです。データサイエンティストと同様に、データを取り扱う職業があります。その中で、データサイエンティストと一番混同されやすいのが、データエンジニアです。今回は「データサイエンティストの最高の相棒はデータエンジニア」というお話しをします。

1、データサイエンティスト

 データサイエンティストの定義は、データサイエンティストに期待されていることだけで考えると、データとその活用領域であるドメインを結びつけることです。賛否両論あるかもしれませんが、データとその活用領域であるドメインを結びつけないことには、評価されません。データサイエンティストは単にデータを相手にするのではないということです。

 

2、機械学習エンジニアとデータアナリスト

 データサンエンティストと似たような職業に、機械学習エンジニアやデータアナリストなどがあります。

 データとその活用領域であるドメインを結びつけるということから考えると、機械学習エンジニアもデータアナリストも、データサイエンティストに含まれます。どちらも、データとドメインを結びつけるのが仕事です。最終的なアウトプットが主に機械学習で活用する数理モデルである「機械学習系のデータサイエンティスト」と、最終的なアウトプットが主に分析レポートなどの報告書である「データアナリスト系のデータサイエンティスト」がいるという感じです。クッキリと明確に分かれているわけではありません。

 最近では、BI(ビジネスインテリジェンス)系のデータサイエンティストも登場してきます。分析レポートなどの報告書が、Qlick ViewやTableauなどのBIツールのダッシュボードになった感じです。BIツール周りのデータベースの設計やデータのやり取り、分析結果を出力するダッシュボードの設計など、データアナリスト系のデータサイエンティストとは違うスキルが求められるようになっています。

3、データエンジニア

 データサイエンスや機械学習などの書籍を多数出版しているO’Reilly 社のサイトに「Data engineers vs. data scientists (Jesse Anderson、2018年4月11日)」という記事が掲載されています。

 この記事ではデータサイエンティストとデータエンジニアの対比が非常に分かりやすくまとめられています。この対比から分かるのは、データサイエンティストは数学的素養と高度な分析スキルが、データエンジニアよりも求められるということです。一方データエンジニアは、高度なプログラミングスキルを用いてビッグデータ処理が求められるようです。共通しているのはプログラミングスキルです。これは、あくまでもデータサイエンティストとデータエンジニアを対比させた場合、その違いを明確にするためのものですので求められるスキルは他にもあることでしょう。

4、データサイエンティストはロックスター

 データサイエンティストとデータエンジニアは、それぞれ別の職場で働くのでしょうか。実際は協働します。世界最大のコンピュータネットワーク機器開発会社であるCisco社のサイトに「Data Scientist or Data Engineer? Think Rock Star and Roadie(Neeraj Chadha、2016/11/15)」という記事が記載されています。データサイエンティストとデータエンジニアの協働関係を記載したものです。

 記事では「データサイエンティストはロックスターで、データエンジニアはステージを設置し部隊音響を手掛ける裏方です。データサイエンティストはデータエンジニアなくしては輝けない」と記載されています。データエンジニアは、収集したデータをHadoop や Spark などのビッグデータ技術を駆使することで、データサイエンティストが扱いやすいデータに変換し提供します。その提供されたデータを集計するほか可視化、分析、予測モデルなどを構築することで、ビジネスにつなげるのがデータサイエンティストです。

5、データサイエンティスト1人あたりデータエンジニアは何人必要?

 先ほどのO’Reilly 社サイトの掲載記事「Data engineers vs. data scientists (Jesse Anderson、2018年4月11日)」によると「1人のデータサイエンティストを支えるためには、複数のデータエンジニアが必要である」と記載されています。スタート時点で「データサイエンティスト1人あたり2~3人のデータエンジニア」が必要で、より複雑なデータ処理段階になると「データサイエンティスト1人あたり4~5人のデータエンジニア」が必要になるということです。

 細かい人数はさておき、ビジネスの世界でデータ分析・活用で成果を出したいなら、データサイエンティストだけでなく、少なくとも1人以上のデータエンジ...

情報マネジメント

◆ データサイエンティストの最高の相棒はデータエンジニア

 ビジネスの世界に生きるデータサイエンティストの仕事とは、データとその活用領域であるドメインを結びつけることです。ドメインとは、営業やマーケティング、生産、経営などのデータを活用する現場のことです。データサイエンティストと同様に、データを取り扱う職業があります。その中で、データサイエンティストと一番混同されやすいのが、データエンジニアです。今回は「データサイエンティストの最高の相棒はデータエンジニア」というお話しをします。

1、データサイエンティスト

 データサイエンティストの定義は、データサイエンティストに期待されていることだけで考えると、データとその活用領域であるドメインを結びつけることです。賛否両論あるかもしれませんが、データとその活用領域であるドメインを結びつけないことには、評価されません。データサイエンティストは単にデータを相手にするのではないということです。

 

2、機械学習エンジニアとデータアナリスト

 データサンエンティストと似たような職業に、機械学習エンジニアやデータアナリストなどがあります。

 データとその活用領域であるドメインを結びつけるということから考えると、機械学習エンジニアもデータアナリストも、データサイエンティストに含まれます。どちらも、データとドメインを結びつけるのが仕事です。最終的なアウトプットが主に機械学習で活用する数理モデルである「機械学習系のデータサイエンティスト」と、最終的なアウトプットが主に分析レポートなどの報告書である「データアナリスト系のデータサイエンティスト」がいるという感じです。クッキリと明確に分かれているわけではありません。

 最近では、BI(ビジネスインテリジェンス)系のデータサイエンティストも登場してきます。分析レポートなどの報告書が、Qlick ViewやTableauなどのBIツールのダッシュボードになった感じです。BIツール周りのデータベースの設計やデータのやり取り、分析結果を出力するダッシュボードの設計など、データアナリスト系のデータサイエンティストとは違うスキルが求められるようになっています。

3、データエンジニア

 データサイエンスや機械学習などの書籍を多数出版しているO’Reilly 社のサイトに「Data engineers vs. data scientists (Jesse Anderson、2018年4月11日)」という記事が掲載されています。

 この記事ではデータサイエンティストとデータエンジニアの対比が非常に分かりやすくまとめられています。この対比から分かるのは、データサイエンティストは数学的素養と高度な分析スキルが、データエンジニアよりも求められるということです。一方データエンジニアは、高度なプログラミングスキルを用いてビッグデータ処理が求められるようです。共通しているのはプログラミングスキルです。これは、あくまでもデータサイエンティストとデータエンジニアを対比させた場合、その違いを明確にするためのものですので求められるスキルは他にもあることでしょう。

4、データサイエンティストはロックスター

 データサイエンティストとデータエンジニアは、それぞれ別の職場で働くのでしょうか。実際は協働します。世界最大のコンピュータネットワーク機器開発会社であるCisco社のサイトに「Data Scientist or Data Engineer? Think Rock Star and Roadie(Neeraj Chadha、2016/11/15)」という記事が記載されています。データサイエンティストとデータエンジニアの協働関係を記載したものです。

 記事では「データサイエンティストはロックスターで、データエンジニアはステージを設置し部隊音響を手掛ける裏方です。データサイエンティストはデータエンジニアなくしては輝けない」と記載されています。データエンジニアは、収集したデータをHadoop や Spark などのビッグデータ技術を駆使することで、データサイエンティストが扱いやすいデータに変換し提供します。その提供されたデータを集計するほか可視化、分析、予測モデルなどを構築することで、ビジネスにつなげるのがデータサイエンティストです。

5、データサイエンティスト1人あたりデータエンジニアは何人必要?

 先ほどのO’Reilly 社サイトの掲載記事「Data engineers vs. data scientists (Jesse Anderson、2018年4月11日)」によると「1人のデータサイエンティストを支えるためには、複数のデータエンジニアが必要である」と記載されています。スタート時点で「データサイエンティスト1人あたり2~3人のデータエンジニア」が必要で、より複雑なデータ処理段階になると「データサイエンティスト1人あたり4~5人のデータエンジニア」が必要になるということです。

 細かい人数はさておき、ビジネスの世界でデータ分析・活用で成果を出したいなら、データサイエンティストだけでなく、少なくとも1人以上のデータエンジニアが必要で、通常はデータサイエンティストよりも多いデータエンジニアが必要となります。

6、独りぼっち状態のデータサイエンティストという悲劇

 周辺に仲間も理解者もいない独りぼっち状態のデータサイエンティストのことを「ぼっちデータサイエンティスト」と呼びます。

  • 「よし、我が社もデジタルトランスフォーメーションだ」
  • 「ビッグデータだ! データサイエンスだ!!! AIだ!!!」

 このような掛け声のもと、データサイエンティストだけを揃えても上手くいかないことでしょう。データサイエンティストを支える人財がいないからです。ではデータエンジニアがいない場合、データサイエンティストはどうするのでしょうか。多くの場合自分自身でなんとかします。ソフトウェアエンジニアから見たら、見るに堪えないプログラムコードを書き、データエンジニアがやるはずのデータ処理を実施します。慣れないものだからプログラミングや実装したプログラムの処理スピードも、非常に遅くなる場合が多いようです。その結果ビジネスへのデータ分析・活用が大幅に遅れるか、データサイエンティストが無理をして働くことになります。毎日のように朝日を拝んで帰宅するデータサイエンティストが増えないことを祈るばかりです。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
分析より、いかに活用するか データ分析講座(その38)

◆ なぜ、データ分析で成果がでないのか? KPIの共有の仕方で解決する「簡単なコツ」  なぜ、データ分析しても施策につながらず、具体的な成果がでない...

◆ なぜ、データ分析で成果がでないのか? KPIの共有の仕方で解決する「簡単なコツ」  なぜ、データ分析しても施策につながらず、具体的な成果がでない...


DXという見栄の代償 データ分析講座(その230)

  【この連載の前回:データ分析講座(その229)やったことのないデータ活用を率先してやるへのリンク】 ◆関連解説『情報マネジメントとは...

  【この連載の前回:データ分析講座(その229)やったことのないデータ活用を率先してやるへのリンク】 ◆関連解説『情報マネジメントとは...


国際規格・業界規格 制御システム(その6)

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...


「情報マネジメント一般」の活用事例

もっと見る
中小企業のセキュリティ対策を考える

◆ 企業の情報セキュリティと新型コロナウィルス対策の今  先日、駅のプラットフォ-ムで並んでいる時に、控えめに咳をしたら、前に並んでいた人にすかさず...

◆ 企業の情報セキュリティと新型コロナウィルス対策の今  先日、駅のプラットフォ-ムで並んでいる時に、控えめに咳をしたら、前に並んでいた人にすかさず...


‐クレ-ム情報を開発に活用‐  製品・技術開発力強化策の事例(その13)

 前回の事例その12に続いて解説します。顧客から出されたクレ-ムは、技術開発や、関連製品の開発の可能性を潜在させている場合が多いようです。その視点からクレ...

 前回の事例その12に続いて解説します。顧客から出されたクレ-ムは、技術開発や、関連製品の開発の可能性を潜在させている場合が多いようです。その視点からクレ...


情報、常識の検証を考える

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...