疑われたデータ分析のメリット データ分析講座(その163)

更新日

投稿日

データ分析

 

◆ “当たり前の結果”で共感を得ることから始めよう

 データを使うことに不慣れな組織や人の場合、データから導き出された結果に対し極端な反応をします。あり得ない期待を抱くか、もしくは無関心かのどちらかです。なぜ両極端に振れるのか分かりませんが、その振れ具合が最近大きくなっています。今回は「データ分析のメリットを疑われたら、当たり前の結果を当たり前に出さないといけない」というお話しをします。

 

【目次】

1.両極端に振れる
(1)あり得ない期待を抱くケース
(2)データ分析・活用の多くは地味な改善

2.無関心の壁
(1)当たり前の結果を、当たり前に出す
(2)その先にすべきこと

3.今回のまとめ

 

1.両極端に振れる

 現実を見ていないというのは、恐ろしいものです。現実とは「データ分析・活用とはどのようなものか」という現実です。この場合、組織レベルというよりも、人レベルで両極端になってしまいます。一つは、あり得ない期待を抱くケースです。もう一つは無関心なケースです。無関心なケースよりも、あり得ない期待を抱くケースの方がいいのではないか、という考え方もありますが、なかなか難しい問題です。

(1)あり得ない期待を抱くケース

 データ分析やデータサイエンス、ビッグデータ、機械学習、AIに対し、あり得ない期待を抱く組織や人は確かに存在します。データと真摯(しんし)に向き合ったことのある人であれば、そのような幻想を抱くことは、まずありません。あり得ない期待とは「魔法」や「切り札」、「突破口」などといった期待です。このような期待は持たない方がいいでしょう。なぜならば、多くの場合あり得ないからです。

(2)データ分析・活用の多くは地味な改善

 データ分析・活用の多くは地味な改善です。例えば、日々の業務の改善、提供サービスの改善、製品の改善(改良)などです。米AmazonなどのECサイトが、購買履歴や商品の閲覧履歴などを利用して商品をレコメンド(おすすめ)するエンジンを利用していることでしょう。リアル店舗であれば、店員さんがお客さまに商品をおすすめします。それを、ウェブ上の店舗では、レコメンドエンジンを使い商品を紹介します。恐らく、データを使って商品レコメンドという業務(もちろん、人ではなくコンピューターの業務)を日々改善していると思います。それを手作業で改善するのか、コンピューターで自動的に改善するのか、という問題はありますが、地味なデータを使い改善活動していることでしょう。

 

2.無関心の壁

 次に、無関心なケースです。データの有無や質、データ分析の実施の有無や質、データサイエンティストの有無や質、そもそものIT環境の整備状況など全く関係なく、現場が無関心の場合、データ分析・活用はあり得ません。そのような場合、どのようにすればいいのでしょうか。私の結論は「当たり前の結果を、当たり前に出す」ということになります。

 では「当たり前の結果を、当たり前に出す」とは、どういうことでしょうか。

(1)当たり前の結果を、当たり前に出す

 無関心なケースの場合、データマイニング的な分析結果として「データから発見した何か」を、現場に持っていっても総スカン状態になります。「感覚と合わない」この一言で撃沈です。であれば、まずは「当たり前の結果を、当たり前に出す」ことをした方がいいのです。現場から「分かる、分かる」、「感覚と一致する」、「やっぱり」このようなフレーズが飛び出すと、一歩前進です。このフレーズを出すには、データから「当たり前の結果を、当たり前に出す」ことを実施するだけです。

(2)その先にすべきこと

 現場から「分かる、分かる」などのフレーズが出たら、次にすべきことがあります。それは「データ分析だから導き出せた何か」を提示することです。例えば、法人相手のビジネスの場合、顧客の離反を防ぐために「訪問」が有効であることは、営業の現場の人は何となく知っています。そのことを、データから導き出せば「やっぱり、そうだよね」と言われることでしょう。そこまでは、データを分析しなくても、現場の人も感づいています。

 そこで、次のような「データ分析だから導き出せた何か」を、現場の営業パーソンに...

データ分析

 

◆ “当たり前の結果”で共感を得ることから始めよう

 データを使うことに不慣れな組織や人の場合、データから導き出された結果に対し極端な反応をします。あり得ない期待を抱くか、もしくは無関心かのどちらかです。なぜ両極端に振れるのか分かりませんが、その振れ具合が最近大きくなっています。今回は「データ分析のメリットを疑われたら、当たり前の結果を当たり前に出さないといけない」というお話しをします。

 

【目次】

1.両極端に振れる
(1)あり得ない期待を抱くケース
(2)データ分析・活用の多くは地味な改善

2.無関心の壁
(1)当たり前の結果を、当たり前に出す
(2)その先にすべきこと

3.今回のまとめ

 

1.両極端に振れる

 現実を見ていないというのは、恐ろしいものです。現実とは「データ分析・活用とはどのようなものか」という現実です。この場合、組織レベルというよりも、人レベルで両極端になってしまいます。一つは、あり得ない期待を抱くケースです。もう一つは無関心なケースです。無関心なケースよりも、あり得ない期待を抱くケースの方がいいのではないか、という考え方もありますが、なかなか難しい問題です。

(1)あり得ない期待を抱くケース

 データ分析やデータサイエンス、ビッグデータ、機械学習、AIに対し、あり得ない期待を抱く組織や人は確かに存在します。データと真摯(しんし)に向き合ったことのある人であれば、そのような幻想を抱くことは、まずありません。あり得ない期待とは「魔法」や「切り札」、「突破口」などといった期待です。このような期待は持たない方がいいでしょう。なぜならば、多くの場合あり得ないからです。

(2)データ分析・活用の多くは地味な改善

 データ分析・活用の多くは地味な改善です。例えば、日々の業務の改善、提供サービスの改善、製品の改善(改良)などです。米AmazonなどのECサイトが、購買履歴や商品の閲覧履歴などを利用して商品をレコメンド(おすすめ)するエンジンを利用していることでしょう。リアル店舗であれば、店員さんがお客さまに商品をおすすめします。それを、ウェブ上の店舗では、レコメンドエンジンを使い商品を紹介します。恐らく、データを使って商品レコメンドという業務(もちろん、人ではなくコンピューターの業務)を日々改善していると思います。それを手作業で改善するのか、コンピューターで自動的に改善するのか、という問題はありますが、地味なデータを使い改善活動していることでしょう。

 

2.無関心の壁

 次に、無関心なケースです。データの有無や質、データ分析の実施の有無や質、データサイエンティストの有無や質、そもそものIT環境の整備状況など全く関係なく、現場が無関心の場合、データ分析・活用はあり得ません。そのような場合、どのようにすればいいのでしょうか。私の結論は「当たり前の結果を、当たり前に出す」ということになります。

 では「当たり前の結果を、当たり前に出す」とは、どういうことでしょうか。

(1)当たり前の結果を、当たり前に出す

 無関心なケースの場合、データマイニング的な分析結果として「データから発見した何か」を、現場に持っていっても総スカン状態になります。「感覚と合わない」この一言で撃沈です。であれば、まずは「当たり前の結果を、当たり前に出す」ことをした方がいいのです。現場から「分かる、分かる」、「感覚と一致する」、「やっぱり」このようなフレーズが飛び出すと、一歩前進です。このフレーズを出すには、データから「当たり前の結果を、当たり前に出す」ことを実施するだけです。

(2)その先にすべきこと

 現場から「分かる、分かる」などのフレーズが出たら、次にすべきことがあります。それは「データ分析だから導き出せた何か」を提示することです。例えば、法人相手のビジネスの場合、顧客の離反を防ぐために「訪問」が有効であることは、営業の現場の人は何となく知っています。そのことを、データから導き出せば「やっぱり、そうだよね」と言われることでしょう。そこまでは、データを分析しなくても、現場の人も感づいています。

 そこで、次のような「データ分析だから導き出せた何か」を、現場の営業パーソンに提示したことがあります。それは「離反される訪問回数の閾値(しきいち)」です。年間何回訪問すればいいのかといった「目安」を提示したということです。

 

3.今回のまとめ

 今回は「データ分析のメリットを疑われたら、当たり前の結果を当たり前に出さないといけない」というお話しをしました。データを使うことに不慣れな組織の場合、データから導き出された結果に対し極端な反応をします。あり得ない期待を抱くか、もしくは無関心か、のどちらかです。なぜ両極端に振れるのか分かりませんが、その振れ具合が最近大きくなっています。

 無関心なケースの場合「当たり前の結果を、当たり前に出す」といいでしょう。それだけだと「当たり前のことが分かっただけだよね」となりますので「データ分析だから導き出せた何か」を提示することが必要になります。要するに、当たり前のことをデータで示し共感を得、さらに深い部分をデータ分析で導き出すということです。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
点予測と区間予測 データ分析講座(その210)

  よくデータサイエンスや機械学習などの技術を使い予測モデルを構築するケースも増えています。その中でよく目にするのが点予測です。点予測とは...

  よくデータサイエンスや機械学習などの技術を使い予測モデルを構築するケースも増えています。その中でよく目にするのが点予測です。点予測とは...


データ活用の成果は金額換算で データ分析講座(その286)

  DX・AI・ビッグデータなど、データ活用にチャレンジする機会が増えてきました。ただし、目標設定が定性的過ぎて、単にそのためのシステム導...

  DX・AI・ビッグデータなど、データ活用にチャレンジする機会が増えてきました。ただし、目標設定が定性的過ぎて、単にそのためのシステム導...


理想のダッシュボードとは:データ分析講座(その311)

    ビジネスの現場のダッシュボードは、パワーポイントやワードなどのレポートが担っていた役割を、ダッシュボードが代替するよう...

    ビジネスの現場のダッシュボードは、パワーポイントやワードなどのレポートが担っていた役割を、ダッシュボードが代替するよう...


「情報マネジメント一般」の活用事例

もっと見る
簡易版DX/IoTから機械学習への移行

  ◆ DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に  産業界のニュースなどをインターネットで読んでいると...

  ◆ DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に  産業界のニュースなどをインターネットで読んでいると...


‐情報収集で配慮すべき事項(第2回)‐  製品・技術開発力強化策の事例(その10)

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


既存コア技術強化のためのオープン・イノベーション:富士フイルムの例

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...