データ起点で考える不幸 データ分析講座(その276)

更新日

投稿日

情報マネジメント

 

「折角だからこのデータを使って!」的なことがありませんか。そのデータを溜めるまでに多大なる労力を要したのか、データ整備に多大なる時間を要したのか、ITシステム周りでコストが掛かったのか、何かは知りませんが、特定のデータに執着される方も、少なくありません。もちろん、そうでない人のほうが多いかもしれませんが……。

 

そのデータを使うかどうかは、解決すべき課題次第です。解決すべき課題にとって必要であれば、そのデータは必要ですし、不必要であれば不必要です。今回は「折角だからこのデータを使って! と言われ無理に使うと面倒なことになる」というお話しをします。

 

【目次】
1. データ起点で考える不幸
2. 無理やり登場させロジック崩壊の危機
3. 使ったふりをする無駄作業
4. 使ったふりと知らずにシステム維持されコスト垂れ流し

 

【この連載の前回:(その275)データ活用上の「お困りごと」の混在とはへのリンク】

 

◆【特集】 連載記事紹介:連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

 

◆データ分析講座の注目記事紹介

 

1. データ起点で考える不幸

データに執着するときに、もっとも多いパターンが、データ起点でデータ活用を考えるという不幸です。不幸とは、ビジネスの現場で何ら成果を生み出せず、労力が無駄になることを言っています。データ起点で考えるときに出てくる、典型的な口癖です。

  • 「このデータで何ができるのか?」

 

具体的なデータ名で言い換えます。

  • 「営業の受発注データあるけど、このデータで何ができる?」
  • 「コールセンターのデータあるけど、このデータで何ができる?」
  • 「工場のセンサーデータあるけど、このデータで何ができる?」

 

今、赤ちゃんが目の前にいるとしましょう。「この赤ちゃん、将来どうなりますか?」は、難問です。赤ちゃんには無限の可能性があるからです。

 

実は、データにも無限の可能性があります。何ができるのかが知りたいのなら、何をしたほうがいいのかという探索的なデータ分析から始めたほうがいいでしょう。先程の赤ちゃんの例で考えると、その赤ちゃんを見ながら、将来こんな子になるかも、あんな子かもしれない、と考えるということです。そこには、考える人の願望が入ります。データ活用も同様です。

 

何をしたいのかという願望がないことには、なかなか難しいことです。

 

2. 無理やり登場させロジック崩壊の危機

エライ人からの肝いりのデータは、データ分析をするときや数理モデル構築するときなどに、強引にでも登場させなければならないことがあります。

 

「あのデータどうだった?」みたいに聞かれるからです。

 

そのデータをどこかに登場させるロジックを組まなければなりません。恐ろしく頭を酷使する必要があります。ストーリーをうまく考えないと、無理やり感がにじみ出てきます。困ったものです。

 

3. 使ったふりをする無駄作業

ある大企業で、色々なDBや部署などに点在しているデータを集約するためのデータレイクをクラウド上に、数年かけて構築しました。

 

そのデータレイク上のデータをメインで使えというデータ縛りに、その企業のデータサイエンティストたちは非常に困っていました。結局、そのデータレイク構築を主導した役員の退任とともに、そのデータレイクは見向きもされなくなりましたが、今でも稼働し毎月膨大なコストが発生しています。

 

その企業のデータサイエンティストたちがなぜ困っていたかというと、データレイクには上げやすいデータ(ある程度きれいなデータなど)しか上がっておらず、現場課題を解決するような泥臭いデータはデータレイクには存在せず、各現場のDBなどに留まった状態だったからです。

 

そのような状況の中、データレイクにあるデータを、データ分析や数理モデル構築などをするときに、無理くり登場させるために、それなりの時間を必要としていたからです。そこまで酷くないまでも「折角だからこのデータも考慮してみて」みたいな権威のある人の軽い一言が、データ分析者やデータサイエンティスト、機械学習エンジニアなどを苦しめることがあります。

 

そのようなデータを使わないときは、使わない利用を説明する手間が発生するからです。思考と時間の無駄です。

 

4. 使ったふりと知らずにシステム維持されコスト垂れ流し

その...

情報マネジメント

 

「折角だからこのデータを使って!」的なことがありませんか。そのデータを溜めるまでに多大なる労力を要したのか、データ整備に多大なる時間を要したのか、ITシステム周りでコストが掛かったのか、何かは知りませんが、特定のデータに執着される方も、少なくありません。もちろん、そうでない人のほうが多いかもしれませんが……。

 

そのデータを使うかどうかは、解決すべき課題次第です。解決すべき課題にとって必要であれば、そのデータは必要ですし、不必要であれば不必要です。今回は「折角だからこのデータを使って! と言われ無理に使うと面倒なことになる」というお話しをします。

 

【目次】
1. データ起点で考える不幸
2. 無理やり登場させロジック崩壊の危機
3. 使ったふりをする無駄作業
4. 使ったふりと知らずにシステム維持されコスト垂れ流し

 

【この連載の前回:(その275)データ活用上の「お困りごと」の混在とはへのリンク】

 

◆【特集】 連載記事紹介:連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

 

◆データ分析講座の注目記事紹介

 

1. データ起点で考える不幸

データに執着するときに、もっとも多いパターンが、データ起点でデータ活用を考えるという不幸です。不幸とは、ビジネスの現場で何ら成果を生み出せず、労力が無駄になることを言っています。データ起点で考えるときに出てくる、典型的な口癖です。

  • 「このデータで何ができるのか?」

 

具体的なデータ名で言い換えます。

  • 「営業の受発注データあるけど、このデータで何ができる?」
  • 「コールセンターのデータあるけど、このデータで何ができる?」
  • 「工場のセンサーデータあるけど、このデータで何ができる?」

 

今、赤ちゃんが目の前にいるとしましょう。「この赤ちゃん、将来どうなりますか?」は、難問です。赤ちゃんには無限の可能性があるからです。

 

実は、データにも無限の可能性があります。何ができるのかが知りたいのなら、何をしたほうがいいのかという探索的なデータ分析から始めたほうがいいでしょう。先程の赤ちゃんの例で考えると、その赤ちゃんを見ながら、将来こんな子になるかも、あんな子かもしれない、と考えるということです。そこには、考える人の願望が入ります。データ活用も同様です。

 

何をしたいのかという願望がないことには、なかなか難しいことです。

 

2. 無理やり登場させロジック崩壊の危機

エライ人からの肝いりのデータは、データ分析をするときや数理モデル構築するときなどに、強引にでも登場させなければならないことがあります。

 

「あのデータどうだった?」みたいに聞かれるからです。

 

そのデータをどこかに登場させるロジックを組まなければなりません。恐ろしく頭を酷使する必要があります。ストーリーをうまく考えないと、無理やり感がにじみ出てきます。困ったものです。

 

3. 使ったふりをする無駄作業

ある大企業で、色々なDBや部署などに点在しているデータを集約するためのデータレイクをクラウド上に、数年かけて構築しました。

 

そのデータレイク上のデータをメインで使えというデータ縛りに、その企業のデータサイエンティストたちは非常に困っていました。結局、そのデータレイク構築を主導した役員の退任とともに、そのデータレイクは見向きもされなくなりましたが、今でも稼働し毎月膨大なコストが発生しています。

 

その企業のデータサイエンティストたちがなぜ困っていたかというと、データレイクには上げやすいデータ(ある程度きれいなデータなど)しか上がっておらず、現場課題を解決するような泥臭いデータはデータレイクには存在せず、各現場のDBなどに留まった状態だったからです。

 

そのような状況の中、データレイクにあるデータを、データ分析や数理モデル構築などをするときに、無理くり登場させるために、それなりの時間を必要としていたからです。そこまで酷くないまでも「折角だからこのデータも考慮してみて」みたいな権威のある人の軽い一言が、データ分析者やデータサイエンティスト、機械学習エンジニアなどを苦しめることがあります。

 

そのようなデータを使わないときは、使わない利用を説明する手間が発生するからです。思考と時間の無駄です。

 

4. 使ったふりと知らずにシステム維持されコスト垂れ流し

その企業のデータサイエンティストたちのデータ分析結果などのパワーポイントのレポートに「〇✕△分析結果 with 〇〇〇」という感じで、常に〇〇〇(データレイクの名称)が記載されていました。データレイクのデータを使ったどうかに関係なくです。今流行りの単語で言えば「忖度」(そんたく)です。〇〇〇(データレイクの名称)は今や、その企業独自のAIプラットフォームと勘違いするぐらいのパワーを持ち始めています。

 

要は、使ったふりをする無駄作業が発生し、使ったふりと知らずにそのデータレイクは維持され、お金だけ垂れ流し状態です。どこかの会社でも、このように、上手くいっていることになっているDX投資やIT投資が、誰も指摘せず、無駄に維持されコスト垂れ流し状態になっているかもしれません。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データに基づくポリティクスと意思決定 データ分析講座(その171)

  ◆ データに基づくポリティクスと意思決定  前回もお話しましたが、変化が激しく先々の状況が読めないときほど情報を集め、適切な状況判断...

  ◆ データに基づくポリティクスと意思決定  前回もお話しましたが、変化が激しく先々の状況が読めないときほど情報を集め、適切な状況判断...


問題はデータ分析結果を活用しないこと データ分析講座(その99)

◆ 「この分析結果は当たり前」と言われた時が実はチャンス  今回は「この分析結果は当たり前」と言われた時が実はチャンス」というお話しです。当然と言え...

◆ 「この分析結果は当たり前」と言われた時が実はチャンス  今回は「この分析結果は当たり前」と言われた時が実はチャンス」というお話しです。当然と言え...


データ活用に投資する前に分析で成果を データ分析講座(その97)

◆ データ活用が上手くいっていない状態とは  「全くデータ活用が上手くいっていない」「データ分析しているけど目立った成果が出ていない」「社内データを...

◆ データ活用が上手くいっていない状態とは  「全くデータ活用が上手くいっていない」「データ分析しているけど目立った成果が出ていない」「社内データを...


「情報マネジメント一般」の活用事例

もっと見る
生産スピード向上と品質管理

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...


システムトラブル、誰に相談したら良いか

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...


たかがWord、されどWord

 マイクロソフトOfficeはどこでも使われているので、ITリテラシーとしてWordを使えることが求められます。『 Wordが使える 』と言っても、そのレ...

 マイクロソフトOfficeはどこでも使われているので、ITリテラシーとしてWordを使えることが求められます。『 Wordが使える 』と言っても、そのレ...