データによる課題発見と課題解決 データ分析講座(その247)

投稿日

データ分析

 

問題解決は、取り組むテーマ・課題を設定する「課題発見フェーズ」と、その課題に取り組む「課題解決フェーズ」に分かれます。そこでどのようにデータを絡ませるか?データの絡ませ方には4つのパターンがあります。今回は「データによる課題発見と課題解決」というお話しをします。

 

【目次】
1. 4つのパターン
 (1)パターン1:課題発見でデータを使う
 (2)パターン2:課題解決でデータを使う
 (3)パターン3:課題発見と課題解決の両方でデータを使う
 (4)パターン4:課題発見と課題解決のどちらでもデータを使わない

 

【この連載の前回:データ分析講座(その246)データから根本原因を考えるフレームワークへのリンク】

1. 4つのパターン

問題解決でのデータの絡ませ方には、以下の4つのパターンがあります。  

 

情報マネジメント

 

  • パターン1:課題発見でデータを使う
  • パターン2:課題解決でデータを使う
  • パターン3:課題発見と課題解決の両方でデータを使う
  • パターン4:課題発見と課題解決のどちらでもデータを使わない

 

(1)パターン1:課題発見でデータを使う

課題発見でデータを使うとは、取り組むテーマと言うか課題を設定するときに、データによるエビデンスと言うかファクト(事実)もしくはデータから導き出した傾向にもとづいた検討をする、ということです。従来からある数理統計学や多変量解析の力を使います。多くの場合、統計的推測(推定と検定)や相関関係(もしくは回帰分析や決定木分析など)の分析で十分です。

 

例えば、売上が落ちた、という事実に対し、なぜ落ちたのかをデータも活用し分析し、その要因を探る、ということです。もちろん、十分なデータがない場合のケースが多々あります。データがない場合には、データにもとづいた定量的なアプローチではなく、ヒアリングや現地調査などの定性的なアプローチが必要になります。

 

(2)パターン2:課題解決でデータを使う

課題解決でデータを使うとは、取り組むテーマと言うか設定された課題に取り組むときに、データを使って現場アクションの手助けをする、ということです。例えば、顧客の離反対策を日々実施しなければならない部署にとって、誰が離反しそうかのアラートは重要です。そのアラートをデータにもとづいて出すということです。

 

例えば、受注予測や予知保全、予兆検知なども同様でしょう。今すべき現場アクションの背中を押したり、アクションの質を高めたりするために利用されるケースが多いです。

 

(3)パターン3:課題発見と課題解決の両方でデータを使う

課題発見と課題解決の両方でデータを使うとは、取り組むテーマと言うか課題を設定するときにもデータを使うし、その課題に取り組むときにもデータを使うケースです。

 

このパターンは、データが大活躍します。データを両方で使える状態になっている場合、まさにデータドリブンな状態と言えるでしょう。営業であればデータドリブン営業、マーケティングであればデータドリブンマーケティング、経営であればデータドリブン経営、などなど。

 

(4)パターン4:課題発見と課題解決のどちらでもデータを使わない

データは無理して使う必要はありません。データを使わずに問題解決できるのであれば、それはそれで問題ありません。世の中には、データを使わなくても課題発見できることもありますし、デ...

データ分析

 

問題解決は、取り組むテーマ・課題を設定する「課題発見フェーズ」と、その課題に取り組む「課題解決フェーズ」に分かれます。そこでどのようにデータを絡ませるか?データの絡ませ方には4つのパターンがあります。今回は「データによる課題発見と課題解決」というお話しをします。

 

【目次】
1. 4つのパターン
 (1)パターン1:課題発見でデータを使う
 (2)パターン2:課題解決でデータを使う
 (3)パターン3:課題発見と課題解決の両方でデータを使う
 (4)パターン4:課題発見と課題解決のどちらでもデータを使わない

 

【この連載の前回:データ分析講座(その246)データから根本原因を考えるフレームワークへのリンク】

1. 4つのパターン

問題解決でのデータの絡ませ方には、以下の4つのパターンがあります。  

 

情報マネジメント

 

  • パターン1:課題発見でデータを使う
  • パターン2:課題解決でデータを使う
  • パターン3:課題発見と課題解決の両方でデータを使う
  • パターン4:課題発見と課題解決のどちらでもデータを使わない

 

(1)パターン1:課題発見でデータを使う

課題発見でデータを使うとは、取り組むテーマと言うか課題を設定するときに、データによるエビデンスと言うかファクト(事実)もしくはデータから導き出した傾向にもとづいた検討をする、ということです。従来からある数理統計学や多変量解析の力を使います。多くの場合、統計的推測(推定と検定)や相関関係(もしくは回帰分析や決定木分析など)の分析で十分です。

 

例えば、売上が落ちた、という事実に対し、なぜ落ちたのかをデータも活用し分析し、その要因を探る、ということです。もちろん、十分なデータがない場合のケースが多々あります。データがない場合には、データにもとづいた定量的なアプローチではなく、ヒアリングや現地調査などの定性的なアプローチが必要になります。

 

(2)パターン2:課題解決でデータを使う

課題解決でデータを使うとは、取り組むテーマと言うか設定された課題に取り組むときに、データを使って現場アクションの手助けをする、ということです。例えば、顧客の離反対策を日々実施しなければならない部署にとって、誰が離反しそうかのアラートは重要です。そのアラートをデータにもとづいて出すということです。

 

例えば、受注予測や予知保全、予兆検知なども同様でしょう。今すべき現場アクションの背中を押したり、アクションの質を高めたりするために利用されるケースが多いです。

 

(3)パターン3:課題発見と課題解決の両方でデータを使う

課題発見と課題解決の両方でデータを使うとは、取り組むテーマと言うか課題を設定するときにもデータを使うし、その課題に取り組むときにもデータを使うケースです。

 

このパターンは、データが大活躍します。データを両方で使える状態になっている場合、まさにデータドリブンな状態と言えるでしょう。営業であればデータドリブン営業、マーケティングであればデータドリブンマーケティング、経営であればデータドリブン経営、などなど。

 

(4)パターン4:課題発見と課題解決のどちらでもデータを使わない

データは無理して使う必要はありません。データを使わずに問題解決できるのであれば、それはそれで問題ありません。世の中には、データを使わなくても課題発見できることもありますし、データを使わなくても課題解決することもあります。

 

しかし、両方で使わない場合、データが無かったり、データがあっても汚かったり、データ活用できる状態でない場合も少なくありません。まともにデータ活用を実施したことのない組織のデータほど、汚いという実情があります。そのような組織の方は、何かしらデータ分析を実施し、その汚さを認識し、一度データを綺麗にしておくことをお勧めします。

 

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
標準化か正規化か?機械学習データ処理の選択肢:データ分析講座(その348)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 機械学習におけるデータの前処理は、モデルの性能に大き...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 機械学習におけるデータの前処理は、モデルの性能に大き...


BIツールは、どのような生産性分析ができるのか?

  前回のBIツールとは、生産性向上にお勧めしたい最強のツールの解説に続けます。BIツールは、情報を把握、蓄積していくことで、以下の様な分...

  前回のBIツールとは、生産性向上にお勧めしたい最強のツールの解説に続けます。BIツールは、情報を把握、蓄積していくことで、以下の様な分...


需要予測モデル構築時の検討すべきポイント データ分析講座(その251)

  需要予測はビジネスの現場では非常に重要なことです。経験と勘による予測は、時間経過とともに上手く予測できなくなる危険性があります。なによ...

  需要予測はビジネスの現場では非常に重要なことです。経験と勘による予測は、時間経過とともに上手く予測できなくなる危険性があります。なによ...


「情報マネジメント一般」の活用事例

もっと見る
ソフトウェア特許とは(その2)

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...


情報、常識の検証を考える

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...


システムトラブル、誰に相談したら良いか

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...