自動機械学習 データ分析講座(その184)

更新日

投稿日

 

 

◆ 古くて新しい自動機械学習

似たような数理モデルあり、その中から数理モデルを選択してモデル構築する場合のことです。このようなことを自動化したのが、自動機械学習(Automated Machine Learning)というものです。今回は「古くて新しい自動機械学習(Automated Machine Learning)」というお話しです。

【目次】

1.数理モデルの構築プロセス

2.有料ツール

3.無料ツール

4.ハイブリッドな使い方が一番いいかも

5.今回のまとめ

 

1.数理モデルの構築プロセス

 

データ分析

 

数理モデルを構築するプロセスは、例えば次のような感じではないでしょうか。

データ準備

前処理(データクレンジング含む)

特徴量生成・加工・選定

モデル選定・パラメータ最適化・モデル評価

デプロイ(展開)

 

昔からある「自動機械学習(Automated Machine Learning)」は「モデル選定・パラメータ最適化・モデル評価」の部分です。最近ですと「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分も対象にしているものもあるようです。しかしフィーチャーエンジニアリングの自動化は、まだ難しいのではないかと思います。

 

2.有料ツール

最近は、クラウド上で使える有料の自動機械学習(Automated Machine Learning)も出始めています。

有料版のもので、よく名前を聞くのが以下です。

  • AutoML Tables(Google)
  • AutoAI(IBM)
  • Automated ML(Microsoft)
  • DataRobot(DataRobot)
  • AutoFlow(MatrixFlow)
  • Driverless AI(H20.ai)

有料版だけあって、ユーザインターフェースが綺麗です。

 

3.無料ツール

データ分析や数理モデル構築といえば、最近ではRやPython、Juliaなどの無料で使えるものが多数あります。

自動機械学習(Automated Machine Learning)も例外ではなく、幾つかあります。RやPyhton上で動かすものです。

  • R automl
  • R RemixAutoML
  • AUTO-WEKA
  • Python auto-sklearn
  • Python TPOT

 

4.ハイブリッドな使い方が一番いいかも

恐らく、ある程度の数理モデル構築経験のある人であれば、自動機械学習(Automated Machine Learning)で構築した数理モデルの精度を超えることはできるでしょう。有料の自動機械学習(Automated Machine Learning)ツールの場合、安くはないです。無料あれば、コスト面を気にする必要はないことでしょう。しかし、RやPython上で実施するため、それなりのスキルは必要になります。

 

そうなると、無料版を使うとき初心者にはそれなりのハードルがあります。無料版の現状一番いい使い方は、ハイブリッドな使い方が一番いいかもしれません。手作りのモデル構築をサポートする形で、自動機械学習の機能を活用する、という感じです。

 

特に、「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分は、人手が必要な気がしま...

 

 

◆ 古くて新しい自動機械学習

似たような数理モデルあり、その中から数理モデルを選択してモデル構築する場合のことです。このようなことを自動化したのが、自動機械学習(Automated Machine Learning)というものです。今回は「古くて新しい自動機械学習(Automated Machine Learning)」というお話しです。

【目次】

1.数理モデルの構築プロセス

2.有料ツール

3.無料ツール

4.ハイブリッドな使い方が一番いいかも

5.今回のまとめ

 

1.数理モデルの構築プロセス

 

データ分析

 

数理モデルを構築するプロセスは、例えば次のような感じではないでしょうか。

データ準備

前処理(データクレンジング含む)

特徴量生成・加工・選定

モデル選定・パラメータ最適化・モデル評価

デプロイ(展開)

 

昔からある「自動機械学習(Automated Machine Learning)」は「モデル選定・パラメータ最適化・モデル評価」の部分です。最近ですと「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分も対象にしているものもあるようです。しかしフィーチャーエンジニアリングの自動化は、まだ難しいのではないかと思います。

 

2.有料ツール

最近は、クラウド上で使える有料の自動機械学習(Automated Machine Learning)も出始めています。

有料版のもので、よく名前を聞くのが以下です。

  • AutoML Tables(Google)
  • AutoAI(IBM)
  • Automated ML(Microsoft)
  • DataRobot(DataRobot)
  • AutoFlow(MatrixFlow)
  • Driverless AI(H20.ai)

有料版だけあって、ユーザインターフェースが綺麗です。

 

3.無料ツール

データ分析や数理モデル構築といえば、最近ではRやPython、Juliaなどの無料で使えるものが多数あります。

自動機械学習(Automated Machine Learning)も例外ではなく、幾つかあります。RやPyhton上で動かすものです。

  • R automl
  • R RemixAutoML
  • AUTO-WEKA
  • Python auto-sklearn
  • Python TPOT

 

4.ハイブリッドな使い方が一番いいかも

恐らく、ある程度の数理モデル構築経験のある人であれば、自動機械学習(Automated Machine Learning)で構築した数理モデルの精度を超えることはできるでしょう。有料の自動機械学習(Automated Machine Learning)ツールの場合、安くはないです。無料あれば、コスト面を気にする必要はないことでしょう。しかし、RやPython上で実施するため、それなりのスキルは必要になります。

 

そうなると、無料版を使うとき初心者にはそれなりのハードルがあります。無料版の現状一番いい使い方は、ハイブリッドな使い方が一番いいかもしれません。手作りのモデル構築をサポートする形で、自動機械学習の機能を活用する、という感じです。

 

特に、「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分は、人手が必要な気がします。

 

5.今回のまとめ

今回は「古くて新しい自動機械学習(Automated Machine Learning)」というお話しをしました。多くのツールは、「モデル選定・パラメータ最適化・モデル評価」の部分を自動化しています。中には、「モデル選定・パラメータ最適化・モデル評価」の前の「特徴量生成・加工・選定」の部分も対象にしているものもあるようです。素晴らしいことです。

 

現状一番いい使い方は、ハイブリッドな使い方が一番いいかもしれません。手作りのモデル構築をサポートする形で、自動機械学習の機能を活用する、という感じです。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ分析の容易性を評価する3つの視点 データ分析講座(その160)

  ◆ 3つの視点でテーマを考える 【目次】 1. テーマ選定における2つの評価軸 2. 容易性を評価する3つの視点 「取得」...

  ◆ 3つの視点でテーマを考える 【目次】 1. テーマ選定における2つの評価軸 2. 容易性を評価する3つの視点 「取得」...


ガベージイン・ゴスペルアウトとは データ分析講座(その100)

◆ データ分析: 汚いデータでも成果を出すのが腕の見せ所  ある程度データが溜まったらどのような分析手法でもいいので、一度データ分析をすることをお薦...

◆ データ分析: 汚いデータでも成果を出すのが腕の見せ所  ある程度データが溜まったらどのような分析手法でもいいので、一度データ分析をすることをお薦...


データ分析・活用のアプローチとは データ分析講座(その112)

◆ なぜ今、データサイエンスが必要なのか?  データサイエンスという用語は、数十年前からありました。2000年代初期のころ、私が所属していたコンサル...

◆ なぜ今、データサイエンスが必要なのか?  データサイエンスという用語は、数十年前からありました。2000年代初期のころ、私が所属していたコンサル...


「情報マネジメント一般」の活用事例

もっと見る
情報、常識の検証を考える

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...


ソフトウェア特許とは(その1)

 色々と定義はありますが、ソフトウェア特許とは、よく言うビジネスモデル特許であり、情報システムの特許です。言葉に差はあると思いますが、我々実務家は、ソフト...

 色々と定義はありますが、ソフトウェア特許とは、よく言うビジネスモデル特許であり、情報システムの特許です。言葉に差はあると思いますが、我々実務家は、ソフト...