結果系データしかないときの分析とは データ分析講座(その107)

更新日

投稿日

データ分析

◆ 売上や受注などの結果系データしかない時の分析

 ビッグデータの時代というものの、データを眺めてみれば何がビッグなのでしょうか。少なくとも勝手に溜まるデータがビッグになっている、ということがいえそうです。勝手に大きくなっているデータの代表がWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータです。そしてどのような企業にもあるのが売上や受注などの結果系データです。今回は「売上や受注などの結果系データしかない時、どう分析する」というお話しです。

1. データ分析: 勝手に溜まるデータは、ほぼ汚い

 先ほど勝手にビッグになっているデータの代表としてWebアクセスログやセンサーデータなどを挙げましたが、勝手に溜まるデータの多くは分析する段階でそのままの状態では使えません。なぜなら、データ分析という観点から考えると汚くて使えないからです。汚いものはキレイにすればいいので、時間さえかければ大丈夫です。

2. データ分析: データは溜めることを意識して

 Webアクセスログは比較的キレイに蓄積されますが、それでもそのままでは分析に利用できません。

 分析のための前処理がかなり必要となりますし、WebアクセスログそのものがそのままExcelで扱えるようなデータ形式でないため、そのための処理が必要になります。Webアクセスログを取得する時、タグをWebサイトに埋め込めば済みますが多くの場合、欲しいWebアクセスログを取得するためには、それなりに実装しなければなりません。分析中、実装ミスに気づくこともままあります。

 ビッグデータの時代とはいえ、結局のところデータは意識して溜めないと溜まらない、という現実は今も昔も変わらないということです。

3. C.L.ハルの「S-O-R理論」

 勝手に溜まるデータの多くが、結果系のデータです。例えばWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータも、何かしらの結果を反映したデータです。心理学の世界にC.L.ハルの「S-O-R理論」(Stimulus-Organism-Response Theory)という概念があります。非常にシンプルな概念です。

 「S」(Stimulus)は刺激、「O」(Organism)が有機体、「R」(Response)が反応です。データ分析の世界でも、そのままこの概念を活用することができます。

 結果系のデータは「R」になります。「R」が生まれるためには、「S」が必要になります。例えばマーケティングのキャンペーンは「S」で、「O」は消費者、「R」が売上などになります。

 データ分析ではよく「S」と「R」のデータから「S」と「R」の関係を統計モデルなどの数理モデルで表現したりします。多くの場合「O」がどのようになっているのか分からないからです。

4. 「S」はないが「R」がある場合

 「R」に関するデータは“キレイか汚いか”を考えなければ、結構溜めている企業が多いようです。売上系のデータは事業をする上で必須ですし、Webのアクセスログもタグを埋め込んでおけば何かしらデータが蓄積されます。センサーデータも、センサーを設置すればデータは次々と発生していきます。

 しかし「S」に関するデータは、本当に意識しないと蓄積されません。例えばマーケティングキャンペーンの情報はパワポなどの資料としては残っているけど、データ分析できる形では蓄積されていない。Webもリスティングの運用やSNS施策をWeb系の広告代理店に丸投げしているため、記録されているようで実は分析できる形にはなっていないのです。

 センサーデータも、例えば生産機器の温度が上がったので職人技でボルトを0.001ミリ単位で調整したとか、生産設備のメンテンナンスや工場の掃除など、何を行ったのかといった記録は具体的に残って...

データ分析

◆ 売上や受注などの結果系データしかない時の分析

 ビッグデータの時代というものの、データを眺めてみれば何がビッグなのでしょうか。少なくとも勝手に溜まるデータがビッグになっている、ということがいえそうです。勝手に大きくなっているデータの代表がWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータです。そしてどのような企業にもあるのが売上や受注などの結果系データです。今回は「売上や受注などの結果系データしかない時、どう分析する」というお話しです。

1. データ分析: 勝手に溜まるデータは、ほぼ汚い

 先ほど勝手にビッグになっているデータの代表としてWebアクセスログやセンサーデータなどを挙げましたが、勝手に溜まるデータの多くは分析する段階でそのままの状態では使えません。なぜなら、データ分析という観点から考えると汚くて使えないからです。汚いものはキレイにすればいいので、時間さえかければ大丈夫です。

2. データ分析: データは溜めることを意識して

 Webアクセスログは比較的キレイに蓄積されますが、それでもそのままでは分析に利用できません。

 分析のための前処理がかなり必要となりますし、WebアクセスログそのものがそのままExcelで扱えるようなデータ形式でないため、そのための処理が必要になります。Webアクセスログを取得する時、タグをWebサイトに埋め込めば済みますが多くの場合、欲しいWebアクセスログを取得するためには、それなりに実装しなければなりません。分析中、実装ミスに気づくこともままあります。

 ビッグデータの時代とはいえ、結局のところデータは意識して溜めないと溜まらない、という現実は今も昔も変わらないということです。

3. C.L.ハルの「S-O-R理論」

 勝手に溜まるデータの多くが、結果系のデータです。例えばWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータも、何かしらの結果を反映したデータです。心理学の世界にC.L.ハルの「S-O-R理論」(Stimulus-Organism-Response Theory)という概念があります。非常にシンプルな概念です。

 「S」(Stimulus)は刺激、「O」(Organism)が有機体、「R」(Response)が反応です。データ分析の世界でも、そのままこの概念を活用することができます。

 結果系のデータは「R」になります。「R」が生まれるためには、「S」が必要になります。例えばマーケティングのキャンペーンは「S」で、「O」は消費者、「R」が売上などになります。

 データ分析ではよく「S」と「R」のデータから「S」と「R」の関係を統計モデルなどの数理モデルで表現したりします。多くの場合「O」がどのようになっているのか分からないからです。

4. 「S」はないが「R」がある場合

 「R」に関するデータは“キレイか汚いか”を考えなければ、結構溜めている企業が多いようです。売上系のデータは事業をする上で必須ですし、Webのアクセスログもタグを埋め込んでおけば何かしらデータが蓄積されます。センサーデータも、センサーを設置すればデータは次々と発生していきます。

 しかし「S」に関するデータは、本当に意識しないと蓄積されません。例えばマーケティングキャンペーンの情報はパワポなどの資料としては残っているけど、データ分析できる形では蓄積されていない。Webもリスティングの運用やSNS施策をWeb系の広告代理店に丸投げしているため、記録されているようで実は分析できる形にはなっていないのです。

 センサーデータも、例えば生産機器の温度が上がったので職人技でボルトを0.001ミリ単位で調整したとか、生産設備のメンテンナンスや工場の掃除など、何を行ったのかといった記録は具体的に残っていないのです。

 要するに「S」と「R」の関係について「S」がないため分析できない。そこで「R」のデータしかない場合、データ分析はできないのかという疑問が湧いてくるかもしれません。

5. データ分析: 「通常か異常か」なら見られる

 売上や受注などの「R」に関するデータない時どうするのかというと、ベタな分析方法は異常検知になります。異常検知であれば「R」に関するデータだけでも分析しようと思えばできます。

 通常の「R」の値と比べてどうかをみるだけですが、季節変動やトレンドなど考えるべき要因も多々あります。例えばキャンペーンであれば多くの場合、通常の売上ではなく売上拡大(異常な売上)を手にするためにやります。この為、売上の異常検知でキャンペーン期間中に「異常値」が検出されなければ「キャンペーンは上手くいっていないかもしれない」とも解釈できます。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データサイエンティスト必須のスキルとは データ分析講座(その119)

◆ データサイエンティストとゆかいな仲間たち  ビジネスの世界でデータサイエンスを実現するには、当然ながらデータサイエンティストは必須です。しかしデ...

◆ データサイエンティストとゆかいな仲間たち  ビジネスの世界でデータサイエンスを実現するには、当然ながらデータサイエンティストは必須です。しかしデ...


セキュリティ認証 制御システム(その7)

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...


業効率化用ソフトウェアを導入する際の課題(その1)

   この連載は、業務効率化の課題について整理して解説していきます。今回は、業効率化用ソフトウェア導入までの課題、着眼点とアプローチについ...

   この連載は、業務効率化の課題について整理して解説していきます。今回は、業効率化用ソフトウェア導入までの課題、着眼点とアプローチについ...


「情報マネジメント一般」の活用事例

もっと見る
中小製造業のウェブ戦略

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...


生産スピード向上と品質管理

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...


‐情報収集で配慮すべき事項(第1回)‐  製品・技術開発力強化策の事例(その9)

 前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...