◆ 売上や受注などの結果系データしかない時の分析
ビッグデータの時代というものの、データを眺めてみれば何がビッグなのでしょうか。少なくとも勝手に溜まるデータがビッグになっている、ということがいえそうです。勝手に大きくなっているデータの代表がWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータです。そしてどのような企業にもあるのが売上や受注などの結果系データです。今回は「売上や受注などの結果系データしかない時、どう分析する」というお話しです。
1. データ分析: 勝手に溜まるデータは、ほぼ汚い
先ほど勝手にビッグになっているデータの代表としてWebアクセスログやセンサーデータなどを挙げましたが、勝手に溜まるデータの多くは分析する段階でそのままの状態では使えません。なぜなら、データ分析という観点から考えると汚くて使えないからです。汚いものはキレイにすればいいので、時間さえかければ大丈夫です。
2. データ分析: データは溜めることを意識して
Webアクセスログは比較的キレイに蓄積されますが、それでもそのままでは分析に利用できません。
分析のための前処理がかなり必要となりますし、WebアクセスログそのものがそのままExcelで扱えるようなデータ形式でないため、そのための処理が必要になります。Webアクセスログを取得する時、タグをWebサイトに埋め込めば済みますが多くの場合、欲しいWebアクセスログを取得するためには、それなりに実装しなければなりません。分析中、実装ミスに気づくこともままあります。
ビッグデータの時代とはいえ、結局のところデータは意識して溜めないと溜まらない、という現実は今も昔も変わらないということです。
3. C.L.ハルの「S-O-R理論」
勝手に溜まるデータの多くが、結果系のデータです。例えばWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータも、何かしらの結果を反映したデータです。心理学の世界にC.L.ハルの「S-O-R理論」(Stimulus-Organism-Response Theory)という概念があります。非常にシンプルな概念です。
「S」(Stimulus)は刺激、「O」(Organism)が有機体、「R」(Response)が反応です。データ分析の世界でも、そのままこの概念を活用することができます。
結果系のデータは「R」になります。「R」が生まれるためには、「S」が必要になります。例えばマーケティングのキャンペーンは「S」で、「O」は消費者、「R」が売上などになります。
データ分析ではよく「S」と「R」のデータから「S」と「R」の関係を統計モデルなどの数理モデルで表現したりします。多くの場合「O」がどのようになっているのか分からないからです。
4. 「S」はないが「R」がある場合
「R」に関するデータは“キレイか汚いか”を考えなければ、結構溜めている企業が多いようです。売上系のデータは事業をする上で必須ですし、Webのアクセスログもタグを埋め込んでおけば何かしらデータが蓄積されます。センサーデータも、センサーを設置すればデータは次々と発生していきます。
しかし「S」に関するデータは、本当に意識しないと蓄積されません。例えばマーケティングキャンペーンの情報はパワポなどの資料としては残っているけど、データ分析できる形では蓄積されていない。Webもリスティングの運用やSNS施策をWeb系の広告代理店に丸投げしているため、記録されているようで実は分析できる形にはなっていないのです。
センサーデータも、例えば生産機器の温度が上がったので職人技でボルトを0.001ミリ単位で調整したとか、生産設備のメンテンナンスや工場の掃除など、何を行ったのかといった記録は具体的に残って...