データ活用の可能性を高めるたった1つのこと データ分析講座(その200)

更新日

投稿日

 

 

せっかく、データ集計したり分析したり、予測モデルを作って予測値をアウトプットしても、現場で活用されないことは多々あります。現場でのデータ活用の可能性の高め方は、色々なやり方があります。その中で、私が最重要だと感じている1つのやり方を説明します。今回は、「データ活用の可能性を高めるたった1つのこと」というお話しをします。

前回と前々回からの続きの話題になります。

【目次】

1.系統図法で問題を課題化し解決策を考える流れ
(1)何を見せればいいのか?
(2)どう動けばいいのか示さないと活用されない
2.「解決策」(アクション)とのつながりは最重要!
(1)ダメなケース
(2)良いケース

 

1.系統図法で問題を課題化し解決策を考える流れ

前回と前々回の復習です。前々回は、「データ分析上必須な2つのロジカルシンキング」というお話をさせて頂きました。この中で、系統図法で問題を課題化し解決策を考える流れを紹介しました。以下です。

 

【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討

 

前回のお話しは【1】に関するものが中心で、【3】にも若干触れました。今回は【5】です。

 

この【5】の「解決策のデータ活用の可能性検討」は、非常に重要です。ここをクリアできないと、現場でデータ活用されることはありません。

 

(1)何を見せればいいのか?

先ほどお話ししましたが、データ集計したり分析したり、予測モデルを作って予測値をアウトプットしても、現場で活用されないことは多々あります。集計結果や分析結果、予測結果などのアウトプットを見せても、現場で見向きもされないの原因の1つは、見せているものとその手段が不適切なことです。

 

単なる集計結果を見せて大きな成果を上げることもあれば、ディープラーニングだの状態空間モデルだの小難しい数理モデルの結果を見せても全く成果のでないこともあります。データサイエンス技術の難易度と成果の大小は、必ずしも比例しません。それが現実です。

 

(2)どう動けばいいのか示さないと活用されない

結局のところ、現場が動けるようなアウトプットなのか、ということになります。集計結果や分析結果、予測結果などのアウトプットを見せたとき、次のような反応が返ってきたら、現場の動けるようなアウトプットではないということです。

「でっ?」

声に出てなくても、態度で示されたら終了です。相手の反応を見れば分かるので、活用されどうかどうかは瞬時に分かることでしょう。

 

2.「解決策」(アクション)とのつながりは最重要!

データから生成する「課題解決に役立つ情報」(予測値や集計値など)は、単に役立ちそうな情報を列挙すればいいというものではありません。その情報を使いどのようなアクションをとればいいのかまで考える必要があります。

 

新聞の折込チラシを配布しているある小売チェーンの例です。今までは例年通り昨年の同時期と同じ枚数だけチラシを配布しています。販促担当者は、チラシを増やすべきか減らすべきか、そして何枚にすべきか悩んでいました。そこでデータを活用し、チラシの枚数を決められないだろうかと考えました。

 

「解決策」(アクション)は「チラシのROIが最大になる枚数にする」です。

 

ここでは、チラシのROIは「チラシROI=(チラシによる増分売上―チラシ費用)÷チラシ費用」とします。

 

(1)ダメなケース

この企業では、社内の経営企画部門の中にデータサイエンス推進室が設立されたこともあり、データ分析の依頼をしました。出てきたのは、チラシと売上の時系列の推移を表したグラフや、平均値や分散といった統計的な指標、チラシと売上の関係性を見える化した散布図や相関係数という統計的な指標などでした。

 

データ

 

実際、これだけではアクションを起こせませんでした。「課題解決に役立つ情報」(予測値や集計値など)と「解決策」(アクション)のつながりが明確でないためです。アクションの起こせない情報は、そもそも「課題解決に役立つ情報」(予測値や集計値など)とは...

 

 

せっかく、データ集計したり分析したり、予測モデルを作って予測値をアウトプットしても、現場で活用されないことは多々あります。現場でのデータ活用の可能性の高め方は、色々なやり方があります。その中で、私が最重要だと感じている1つのやり方を説明します。今回は、「データ活用の可能性を高めるたった1つのこと」というお話しをします。

前回と前々回からの続きの話題になります。

【目次】

1.系統図法で問題を課題化し解決策を考える流れ
(1)何を見せればいいのか?
(2)どう動けばいいのか示さないと活用されない
2.「解決策」(アクション)とのつながりは最重要!
(1)ダメなケース
(2)良いケース

 

1.系統図法で問題を課題化し解決策を考える流れ

前回と前々回の復習です。前々回は、「データ分析上必須な2つのロジカルシンキング」というお話をさせて頂きました。この中で、系統図法で問題を課題化し解決策を考える流れを紹介しました。以下です。

 

【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討

 

前回のお話しは【1】に関するものが中心で、【3】にも若干触れました。今回は【5】です。

 

この【5】の「解決策のデータ活用の可能性検討」は、非常に重要です。ここをクリアできないと、現場でデータ活用されることはありません。

 

(1)何を見せればいいのか?

先ほどお話ししましたが、データ集計したり分析したり、予測モデルを作って予測値をアウトプットしても、現場で活用されないことは多々あります。集計結果や分析結果、予測結果などのアウトプットを見せても、現場で見向きもされないの原因の1つは、見せているものとその手段が不適切なことです。

 

単なる集計結果を見せて大きな成果を上げることもあれば、ディープラーニングだの状態空間モデルだの小難しい数理モデルの結果を見せても全く成果のでないこともあります。データサイエンス技術の難易度と成果の大小は、必ずしも比例しません。それが現実です。

 

(2)どう動けばいいのか示さないと活用されない

結局のところ、現場が動けるようなアウトプットなのか、ということになります。集計結果や分析結果、予測結果などのアウトプットを見せたとき、次のような反応が返ってきたら、現場の動けるようなアウトプットではないということです。

「でっ?」

声に出てなくても、態度で示されたら終了です。相手の反応を見れば分かるので、活用されどうかどうかは瞬時に分かることでしょう。

 

2.「解決策」(アクション)とのつながりは最重要!

データから生成する「課題解決に役立つ情報」(予測値や集計値など)は、単に役立ちそうな情報を列挙すればいいというものではありません。その情報を使いどのようなアクションをとればいいのかまで考える必要があります。

 

新聞の折込チラシを配布しているある小売チェーンの例です。今までは例年通り昨年の同時期と同じ枚数だけチラシを配布しています。販促担当者は、チラシを増やすべきか減らすべきか、そして何枚にすべきか悩んでいました。そこでデータを活用し、チラシの枚数を決められないだろうかと考えました。

 

「解決策」(アクション)は「チラシのROIが最大になる枚数にする」です。

 

ここでは、チラシのROIは「チラシROI=(チラシによる増分売上―チラシ費用)÷チラシ費用」とします。

 

(1)ダメなケース

この企業では、社内の経営企画部門の中にデータサイエンス推進室が設立されたこともあり、データ分析の依頼をしました。出てきたのは、チラシと売上の時系列の推移を表したグラフや、平均値や分散といった統計的な指標、チラシと売上の関係性を見える化した散布図や相関係数という統計的な指標などでした。

 

データ

 

実際、これだけではアクションを起こせませんでした。「課題解決に役立つ情報」(予測値や集計値など)と「解決策」(アクション)のつながりが明確でないためです。アクションの起こせない情報は、そもそも「課題解決に役立つ情報」(予測値や集計値など)とは言えないかもしれません。

 

(2)良いケース

そこで、次の情報を提供することになりました。

 

チラシROIが最大になる最適チラシ枚数、さらに、「例年通りの枚数」と「最適チラシ枚数」の2つのケースごとに……

 

  • 売上の予測値
  • チラシROI

 

データ

 

例年のチラシ枚数が「最適チラシ枚数」より多ければ減らし少なければ増やす、というアクションを起こせます。「最適チラシ枚数」そのものが、何枚にすべきかというレコメンド情報にもなります。「最適チラシ枚数」を基準に、現実的なチラシ枚数に決定します。実際は、チラシ枚数には配布可能な枚数という意味での上限があるため、際限なく増やすことはできません。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ分析のテーマ データ分析講座(その138)

  ◆ 筋のいいテーマと積小為大  データ分析のテーマには、筋の良いものと悪いものがあります。知らず知らずのうちに、筋の悪いテーマを選んでし...

  ◆ 筋のいいテーマと積小為大  データ分析のテーマには、筋の良いものと悪いものがあります。知らず知らずのうちに、筋の悪いテーマを選んでし...


データ活用術とは データ分析講座(その1)

 ◆ 過去のデータの扱い方効果のある営業が誰にでも出来る、データ活用術とは 1. データベースからの知識発見  KKDの世界からKDDの世界へとは...

 ◆ 過去のデータの扱い方効果のある営業が誰にでも出来る、データ活用術とは 1. データベースからの知識発見  KKDの世界からKDDの世界へとは...


データサイエンス実践の成否とは データ分析講座(その127)

◆ データ分析・活用やデータサイエンス実践の成否は、技術力よりもチーム力  「AI」「IoT」「ビッグデータ」これは最近ビジネス界隈で聞く用語です。...

◆ データ分析・活用やデータサイエンス実践の成否は、技術力よりもチーム力  「AI」「IoT」「ビッグデータ」これは最近ビジネス界隈で聞く用語です。...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集で配慮すべき事項(第3回)‐  製品・技術開発力強化策の事例(その11)

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...


既存コア技術強化のためのオープン・イノベーション:富士フイルムの例

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...


中小製造業のウェブ戦略

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...