やったことのないデータ活用を率先してやる データ分析講座(その229)

投稿日

データ分析

 

【この連載の前回:データ分析講座(その228)上手くいかないと思ったらデータで裏付けへのリンク】

 

何事にも始まりが必ずあるように、多くの食べ物は、誰かが最初に口にしたはずです。例えば、多くの野菜やキノコも同様でしょう。集めたデータと分析の関係は、食材と料理の関係に似ています。今回は「今までやったことのないデータ活用を率先してやる」というお話しです。

 

【目次】
1.腕次第
2.何が食べたいのか?
3.そのデータ分析結果で、現場は動けますか?
4.丁寧な説明とフォローが必要

 

1.腕次第

素晴らしい食材であっても、料理人の腕に問題があると台無しになることがあります。逆に、ありものの食材でも、調理しだいで美味しくなることもあります。データ分析やデータサイエンスなども同じです。素晴らしいデータがあるのに台無しにすることもありますし、不十分なデータでも価値を生み出すこともあります。

 

そして、最初に試される腕が「テーマ設定」にあります。データサイエンス実践(データ分析・活用)の成否を左右するのは、テーマ選定にあります。理由は単純です。上手くいきそうもないことを、いくら頑張っても、上手くいかないからです。

 

2.何が食べたいのか?

「テーマ設定」とは、料理で言い換えると「作る料理を決める(オーダーをもらう)」です。何を食べたいのか分からないと、何を作ればいいのか分からないように、現場でどのような価値を生み出したいのか分からないと、どのようなデータ分析をすればいいのか分かりません。オーダーがない状況で、何を食べたいのか、どのような価値を出したいのかを、推測することは非常に困難です。

 

推測するには熟知している必要があります。料理を食べる人を熟知していないと好みが分からないように、現場を熟知していないとどのようなデータ分析を望んでいるのか見えてきません。多くの場合、データ分析者やデータサイエンティスト側は現場を熟知していないので、現場とともにテーマを設定することになります。料理店がお客さんに何を食べたいのかオーダーを聞くのと同じです。

 

3.そのデータ分析結果で、現場は動けますか?

どんなにおいしい料理でも、食べてもらって「おいしい」と言ってもらえないと、作り手は悲しいでしょう。データサイエンスやデータ分析も同じで、現場で活用してもらって「ありがとう」と言ってもらえないと悲しいものです。

 

「ありがとう」という言葉以前の問題が、データ分析の世界では起こりえます。現場で活用されないデータ分析結果です。料理で言い換えると、一口も食べてもらえない料理という感じです。「食べてみようかな」と思われる料理のように、データ分析も現場から「やりたい」「やれそう」「イメージが付く」などの声が上がる分析結果でないと、いけません。

 

4.丁寧な説明とフォローが必要

生まれて初めて見る食材で作った料理や、誰もが食べるのを避けている料理を、我先に食べる人が少ないと思います。データ活用の進んでいない現場で、積極的に...

データ分析

 

【この連載の前回:データ分析講座(その228)上手くいかないと思ったらデータで裏付けへのリンク】

 

何事にも始まりが必ずあるように、多くの食べ物は、誰かが最初に口にしたはずです。例えば、多くの野菜やキノコも同様でしょう。集めたデータと分析の関係は、食材と料理の関係に似ています。今回は「今までやったことのないデータ活用を率先してやる」というお話しです。

 

【目次】
1.腕次第
2.何が食べたいのか?
3.そのデータ分析結果で、現場は動けますか?
4.丁寧な説明とフォローが必要

 

1.腕次第

素晴らしい食材であっても、料理人の腕に問題があると台無しになることがあります。逆に、ありものの食材でも、調理しだいで美味しくなることもあります。データ分析やデータサイエンスなども同じです。素晴らしいデータがあるのに台無しにすることもありますし、不十分なデータでも価値を生み出すこともあります。

 

そして、最初に試される腕が「テーマ設定」にあります。データサイエンス実践(データ分析・活用)の成否を左右するのは、テーマ選定にあります。理由は単純です。上手くいきそうもないことを、いくら頑張っても、上手くいかないからです。

 

2.何が食べたいのか?

「テーマ設定」とは、料理で言い換えると「作る料理を決める(オーダーをもらう)」です。何を食べたいのか分からないと、何を作ればいいのか分からないように、現場でどのような価値を生み出したいのか分からないと、どのようなデータ分析をすればいいのか分かりません。オーダーがない状況で、何を食べたいのか、どのような価値を出したいのかを、推測することは非常に困難です。

 

推測するには熟知している必要があります。料理を食べる人を熟知していないと好みが分からないように、現場を熟知していないとどのようなデータ分析を望んでいるのか見えてきません。多くの場合、データ分析者やデータサイエンティスト側は現場を熟知していないので、現場とともにテーマを設定することになります。料理店がお客さんに何を食べたいのかオーダーを聞くのと同じです。

 

3.そのデータ分析結果で、現場は動けますか?

どんなにおいしい料理でも、食べてもらって「おいしい」と言ってもらえないと、作り手は悲しいでしょう。データサイエンスやデータ分析も同じで、現場で活用してもらって「ありがとう」と言ってもらえないと悲しいものです。

 

「ありがとう」という言葉以前の問題が、データ分析の世界では起こりえます。現場で活用されないデータ分析結果です。料理で言い換えると、一口も食べてもらえない料理という感じです。「食べてみようかな」と思われる料理のように、データ分析も現場から「やりたい」「やれそう」「イメージが付く」などの声が上がる分析結果でないと、いけません。

 

4.丁寧な説明とフォローが必要

生まれて初めて見る食材で作った料理や、誰もが食べるのを避けている料理を、我先に食べる人が少ないと思います。データ活用の進んでいない現場で、積極的にデータ活用しようとしてくれる人は、誰も食べたことのない「野生のキノコ」を率先して食べてくるような人です。

 

そんな冒険心溢れた人がいない場合、よく分からない謎だらけのデータ分析結果は、そっと机の中にしまっておかれます。慎重な人ほど、誰も食べたことのない「野生のキノコ」を率先して食べることが無いように、慎重な人ほど、今までやったことのない「データ活用」を率先してやることはないでしょう。だから、現場から「やりたい」「やれそう」「イメージが付く」などの声が多いデータ分析を心掛ける必要があるのです。

 

次回に続きます。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データで表層課題を見える化する:データ分析講座(その338)

【目次】 仕事で難題に直面したとき、何かしら課題解決フレームワークを知っていると便利です。何をすべきか分からない状態から、少し解放さ...

【目次】 仕事で難題に直面したとき、何かしら課題解決フレームワークを知っていると便利です。何をすべきか分からない状態から、少し解放さ...


小さな成功体験を積むと上手くいく データ分析講座(その79)

◆ データ分析は「最初は誰も信じてくれない」小さくはじめ大きく波及させよ  就職して私が配属された部署は、幸いにもデータ分析・活用の歴史の長い組織で...

◆ データ分析は「最初は誰も信じてくれない」小さくはじめ大きく波及させよ  就職して私が配属された部署は、幸いにもデータ分析・活用の歴史の長い組織で...


カテゴリー構築指数とブランド構築指数 データ分析講座(その257)

  自社商品やサービスが、どの顧客セグメントに対し強いのか弱いのか、ポテンシャルが高いのか低いのかを示す指標が構築指標で、次の2種類があり...

  自社商品やサービスが、どの顧客セグメントに対し強いのか弱いのか、ポテンシャルが高いのか低いのかを示す指標が構築指標で、次の2種類があり...


「情報マネジメント一般」の活用事例

もっと見る
現場情報の自動収集に道具だてを

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...


簡易版DX/IoTから機械学習への移行

  ◆ DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に  産業界のニュースなどをインターネットで読んでいると...

  ◆ DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に  産業界のニュースなどをインターネットで読んでいると...


人的資源マネジメント:データ指向ものづくりがもたらす高い生産性

 今、ものづくりの現場が目指すべきは「データ指向ものづくり」だと思います。 今回は、インダストリー4.0のような次世代ものづくりの大波への備えともなる 「...

 今、ものづくりの現場が目指すべきは「データ指向ものづくり」だと思います。 今回は、インダストリー4.0のような次世代ものづくりの大波への備えともなる 「...