分析結果レポートのポイント データ分析講座(その274)

投稿日

情報マネジメント

 

集計や分析、予測の結果をダッシュボードやレポートなどとして、データ活用する現場に提供することがあります。どのようなダッシュボードやレポートを作ればいいのか?そう悩む人も多いことでしょう。今回は「データサイエンスレポートは模擬テスト結果を参考にすればいい」というお話しです。

 

【目次】
1. データからアクションを導くために必要な情報
2. 模擬テスト結果のレポート
3. ポイントはどれだけ読み取れるか?
4. チューター
5. シチズンデータ サイエンティスト

【この連載の前回:(その273)ステークホルダーアップデートとはへのリンク】

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

1. データからアクションを導くために必要な情報

データからアクションを導くために必要な情報として、何が考えられるでしょうか?

例えば……

  1. 現在
  2. 過去
  3. 未来

……に関する情報があるといいのではないでしょうか?

 

現在に関する情報とは、現在どうなっているのか、という現状認識のための情報です。過去に関する情報とは、現在にいたるまでどうだったのか、という過去から現在にいたるまでを明らかにする情報です。未来に関する情報とは、今後どうなりそうか、そのために何をすべきなのか、など今後に関する情報です。

 

ここまで揃えば、データからアクションを導くことができるのではないでしょうか。

 

2. 模擬テスト結果のレポート

多くの人は、子どものころ何かしらの受験勉強をし、模擬テストなどを受けたことがあることでしょう。模擬テスト結果のレポートは、よくできたレポートです。身近なところに受験生のいる方は、見てみてください。受験生のいない方は、思い出してください。

 

模擬テスト結果のレポートを、よくよく見てみると次のような情報が載っています。

  1. 現在:今回のテストの点数など
  2. 過去:過去から今回までのテスト結果の点数の推移など
  3. 未来:合否判定予想や学習アドバイスなど

それが一枚のレポートにまとめられています。すごいことです。どのようにデータサイエンスレポートを作ればいいのか迷われた方は、模擬テスト結果のレポートを参考してもいいでしょう。

 

3. ポイントはどれだけ読み取れるか?

あなたは最初に、模擬テスト結果のレポートのどこを見るでしょうか?

 

私の場合、今回のテストの点数を最初に見ます。次に、合否判定予想を見ます。その後、残りの部分をざっと見ます。点数と合否予測の結果が良ければ安心し、悪ければ凹みます。要は、一喜一憂して終了、といった感じです。それで本当にいいのでしょうか。最大のポイントは、模擬テスト結果のレポートから何を読み取るか、にあります。

 

模擬テストの点数や合否判定予想は非常に気になるところですが、本試験に合格するには、模擬テストの結果から、今後どのような学習をすべきかを知れた方が有意義です。つまり、模擬テスト結果のレポートから、今後「何をすべきか」というアクションを読み取れるかどうかがポイントになります。

 

データサイエンスレポートも同様に、今後「何をすべきか」というアクションを読み取れるかどうかがポイントになります。

 

4. チューター

模擬テスト結果のレポートから、今後「何をすべきか」というアクションを読み取れるかどうかは、個人の力量になります。読み取れる人もいれば、読み取れない人もいます。確実にアクションに結びつけるためには、チューターのような存在が必要かもしれません。

 

チューターとは、大学の学生や会社の新入社員に対して個別指導するちょっと先行く先輩です。模擬テスト結果のレポートを、チューターと一緒に読み解くことで、今後「何をすべきか」というアクションを読み取れる可能性が高まるのではないでしょうか。

 

データサイエンスレポートも同様に、チューターと一緒に読み解くことで、今後「何をすべきか」というアクションを読み取れる可能性が高まると思います。大学の学生のチューターは比較的探すのは容易ですが、データサイエンスのチューターはどこにいるのでしょうか。

 

5. シチズンデータ サイエンティスト

それなりのデータサイエンティストが周囲にいれば問題ないですが、通常は...

情報マネジメント

 

集計や分析、予測の結果をダッシュボードやレポートなどとして、データ活用する現場に提供することがあります。どのようなダッシュボードやレポートを作ればいいのか?そう悩む人も多いことでしょう。今回は「データサイエンスレポートは模擬テスト結果を参考にすればいい」というお話しです。

 

【目次】
1. データからアクションを導くために必要な情報
2. 模擬テスト結果のレポート
3. ポイントはどれだけ読み取れるか?
4. チューター
5. シチズンデータ サイエンティスト

【この連載の前回:(その273)ステークホルダーアップデートとはへのリンク】

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

1. データからアクションを導くために必要な情報

データからアクションを導くために必要な情報として、何が考えられるでしょうか?

例えば……

  1. 現在
  2. 過去
  3. 未来

……に関する情報があるといいのではないでしょうか?

 

現在に関する情報とは、現在どうなっているのか、という現状認識のための情報です。過去に関する情報とは、現在にいたるまでどうだったのか、という過去から現在にいたるまでを明らかにする情報です。未来に関する情報とは、今後どうなりそうか、そのために何をすべきなのか、など今後に関する情報です。

 

ここまで揃えば、データからアクションを導くことができるのではないでしょうか。

 

2. 模擬テスト結果のレポート

多くの人は、子どものころ何かしらの受験勉強をし、模擬テストなどを受けたことがあることでしょう。模擬テスト結果のレポートは、よくできたレポートです。身近なところに受験生のいる方は、見てみてください。受験生のいない方は、思い出してください。

 

模擬テスト結果のレポートを、よくよく見てみると次のような情報が載っています。

  1. 現在:今回のテストの点数など
  2. 過去:過去から今回までのテスト結果の点数の推移など
  3. 未来:合否判定予想や学習アドバイスなど

それが一枚のレポートにまとめられています。すごいことです。どのようにデータサイエンスレポートを作ればいいのか迷われた方は、模擬テスト結果のレポートを参考してもいいでしょう。

 

3. ポイントはどれだけ読み取れるか?

あなたは最初に、模擬テスト結果のレポートのどこを見るでしょうか?

 

私の場合、今回のテストの点数を最初に見ます。次に、合否判定予想を見ます。その後、残りの部分をざっと見ます。点数と合否予測の結果が良ければ安心し、悪ければ凹みます。要は、一喜一憂して終了、といった感じです。それで本当にいいのでしょうか。最大のポイントは、模擬テスト結果のレポートから何を読み取るか、にあります。

 

模擬テストの点数や合否判定予想は非常に気になるところですが、本試験に合格するには、模擬テストの結果から、今後どのような学習をすべきかを知れた方が有意義です。つまり、模擬テスト結果のレポートから、今後「何をすべきか」というアクションを読み取れるかどうかがポイントになります。

 

データサイエンスレポートも同様に、今後「何をすべきか」というアクションを読み取れるかどうかがポイントになります。

 

4. チューター

模擬テスト結果のレポートから、今後「何をすべきか」というアクションを読み取れるかどうかは、個人の力量になります。読み取れる人もいれば、読み取れない人もいます。確実にアクションに結びつけるためには、チューターのような存在が必要かもしれません。

 

チューターとは、大学の学生や会社の新入社員に対して個別指導するちょっと先行く先輩です。模擬テスト結果のレポートを、チューターと一緒に読み解くことで、今後「何をすべきか」というアクションを読み取れる可能性が高まるのではないでしょうか。

 

データサイエンスレポートも同様に、チューターと一緒に読み解くことで、今後「何をすべきか」というアクションを読み取れる可能性が高まると思います。大学の学生のチューターは比較的探すのは容易ですが、データサイエンスのチューターはどこにいるのでしょうか。

 

5. シチズンデータ サイエンティスト

それなりのデータサイエンティストが周囲にいれば問題ないですが、通常は現場の近いところにそれなりのデータサイエンティストがいることは稀です。どうすればいいでしょうか。

 

データサイエンスのチューター候補として、シチズンデータ サイエンティストが挙げられます。

 

シチズンデータ サイエンティストは、ガートナー社が提唱したもので、データサイエンティストほど特化したスキルは有していないものの、ある程度のデータリテラシーを有する、営業やマーケティング、開発、生産などのデータ活用の現場近くにいる(もしくは、在籍している)人財です。

 

ある程度のデータリテラシーを有する必要があるため、ある程度の教育と経験などが必要ですが、データサイエンティストほど時間を掛けずに育成することができます。

 

次回に続きます。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
BPMN、CMMN、DMNとは

   この歳になると、転職などは現実としてあまり考えられないし、ましてや良い転職先などはほとんど見つけられそうもないのですが、それでも定期的に...

   この歳になると、転職などは現実としてあまり考えられないし、ましてや良い転職先などはほとんど見つけられそうもないのですが、それでも定期的に...


営業データ分析の良し悪しとは データ分析講座(その8)

  ◆ 営業データ分析の事始めは、「見える化」で失敗し「指標作り」で成功する  「どのようなデータを集めれば、営業力を上げられるのか」こ...

  ◆ 営業データ分析の事始めは、「見える化」で失敗し「指標作り」で成功する  「どのようなデータを集めれば、営業力を上げられるのか」こ...


より高度な分析にこだわる罠とは データ分析講座(その51)

◆ 高度なデータ分析にこだわるほど、データ活用から遠のくという悲しい現実  データ分析の実務を始めたころに、誰もが陥る罠があります。実は、人によって...

◆ 高度なデータ分析にこだわるほど、データ活用から遠のくという悲しい現実  データ分析の実務を始めたころに、誰もが陥る罠があります。実は、人によって...


「情報マネジメント一般」の活用事例

もっと見る
‐販路開拓に関する問題事例‐ 製品・技術開発力強化策の事例(その19)

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...


電子メール、簡潔過ぎると逆効果

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...


ソフトウェア特許とは(その2)

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...