複数の季節変動成分のある時系列データ データ分析講座(その272)

更新日

投稿日

データ分析

 

売上などの時系列データには、周期性があります。周期性の中で、期間の決まっているものを季節性と言ったりします。例えば、1日単位の売上データであれば、週周期(7日間)や年周期(365.25日間)などです。要は、複数の季節成分が混じっている時系列データは少なからずある、ということです。今回は「複数の季節変動成分のある時系列データ」というお話しをします。

 

【目次】
1.時系列データの基本成分に分解する
2.分解手法
3.複数の季節変動を許容する時系列モデルを活用する
4.従来の手法で頑張る
5.分解例

【この連載の前回:(その271)もっとも手軽なAIである異常検知へのリンク】

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

1.時系列データの基本成分に分解する

時系列データ(原系列)は、主に以下の3つの変動成分で成り立っています。

  • トレンド
  • 季節
  • 不規則

 

トレンド変動成分は、上昇傾向や下降傾向などです。季節変動成分は、冒頭から話題に挙げている週周期や年周期のことです。不規則変動成分は、トレンドと季節変動成分以外です。

 

要は……

原系列=トレンド変動+季節変動+不規則変動

……という感じです。上記は「加法(+)」モデルですが「乗法(×)」モデルの場合もあります。

 

季節変動が複数あるとは……

原系列=トレンド変動+季節変動その1+季節変動その2+季節変動その3+不規則変動

……という感じです。上記は、季節変動が3つの場合です。

 

2.分解手法

この3つの成分に分ける手法は色々あります。

  • トレンド
  • 季節
  • 不規則

 

STL(Seasonal-Trend Decomposition Procedure Based on LOESS)法などが有名です。STL法などを使うと、通常は1つの季節変動しか分解できません。では、季節変動が複数ある場合は、どうすれば分解できるのでしょうか?

 

3.複数の季節変動を許容する時系列モデルを活用する

時系列解析系の数理モデルの中には、複数の季節変動を扱えるものがあります。例えば、ProphetやTBATS、STR などの時系列モデルです。これらの数理モデルは、複数の季節変動を扱えます。STL法のようにもっと手軽にという場合には、STLを拡張したMSTL(Multiple Seasonal-Trend decomposition)法があります。

 

ここでは理論的な説明は割愛します。

 

4.従来の手法で頑張る

今紹介した方法ではなく、従来のSTL法などで頑張り季節変動成分を分解していく、という方法もあります。それは、季節変動成分の数だけ、STL法を繰り返し適応し季節変動成分を分解していく、という方法です。今、1時間単位の時系列データ、例えば「気温データ」があったとします。

 

気温ですから、次の2つの季節変動成分が考えられます。

  • 日周期(24時間周期)
  • 年周期(8766時間周期)

 

気温ですから、朝・昼・晩などでは気温は変化しますし、春・夏・秋・冬で気温は変化します。

 

5.分解例

例えば、次のような順番で分解します。

  1. 原系...

データ分析

 

売上などの時系列データには、周期性があります。周期性の中で、期間の決まっているものを季節性と言ったりします。例えば、1日単位の売上データであれば、週周期(7日間)や年周期(365.25日間)などです。要は、複数の季節成分が混じっている時系列データは少なからずある、ということです。今回は「複数の季節変動成分のある時系列データ」というお話しをします。

 

【目次】
1.時系列データの基本成分に分解する
2.分解手法
3.複数の季節変動を許容する時系列モデルを活用する
4.従来の手法で頑張る
5.分解例

【この連載の前回:(その271)もっとも手軽なAIである異常検知へのリンク】

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

1.時系列データの基本成分に分解する

時系列データ(原系列)は、主に以下の3つの変動成分で成り立っています。

  • トレンド
  • 季節
  • 不規則

 

トレンド変動成分は、上昇傾向や下降傾向などです。季節変動成分は、冒頭から話題に挙げている週周期や年周期のことです。不規則変動成分は、トレンドと季節変動成分以外です。

 

要は……

原系列=トレンド変動+季節変動+不規則変動

……という感じです。上記は「加法(+)」モデルですが「乗法(×)」モデルの場合もあります。

 

季節変動が複数あるとは……

原系列=トレンド変動+季節変動その1+季節変動その2+季節変動その3+不規則変動

……という感じです。上記は、季節変動が3つの場合です。

 

2.分解手法

この3つの成分に分ける手法は色々あります。

  • トレンド
  • 季節
  • 不規則

 

STL(Seasonal-Trend Decomposition Procedure Based on LOESS)法などが有名です。STL法などを使うと、通常は1つの季節変動しか分解できません。では、季節変動が複数ある場合は、どうすれば分解できるのでしょうか?

 

3.複数の季節変動を許容する時系列モデルを活用する

時系列解析系の数理モデルの中には、複数の季節変動を扱えるものがあります。例えば、ProphetやTBATS、STR などの時系列モデルです。これらの数理モデルは、複数の季節変動を扱えます。STL法のようにもっと手軽にという場合には、STLを拡張したMSTL(Multiple Seasonal-Trend decomposition)法があります。

 

ここでは理論的な説明は割愛します。

 

4.従来の手法で頑張る

今紹介した方法ではなく、従来のSTL法などで頑張り季節変動成分を分解していく、という方法もあります。それは、季節変動成分の数だけ、STL法を繰り返し適応し季節変動成分を分解していく、という方法です。今、1時間単位の時系列データ、例えば「気温データ」があったとします。

 

気温ですから、次の2つの季節変動成分が考えられます。

  • 日周期(24時間周期)
  • 年周期(8766時間周期)

 

気温ですから、朝・昼・晩などでは気温は変化しますし、春・夏・秋・冬で気温は変化します。

 

5.分解例

例えば、次のような順番で分解します。

  1. 原系列から日周期の季節変動成分を分解(STL法を利用)
  2. 原系列から日周期の季節変動成分を取り除き新たな時系列データを生成
  3. その新たな時系列データから年周期の季節変動成分を分解(STL法を利用

 

これでも、2つの季節変動成分に分解できます。

最終的には……

  • トレンド変動
  • 日周期の季節変動
  • 年周期の季節変動
  • 不規則変動

……に分解されます。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
分析成果を上手く説明できていますか データ分析講座(その292)

  「データがあるから、何か分かるでしょ?」「とりあえず、AI(Deep Learning)で何かやれ!」「よし! デジタルトランスフォー...

  「データがあるから、何か分かるでしょ?」「とりあえず、AI(Deep Learning)で何かやれ!」「よし! デジタルトランスフォー...


データ分析経験者の中途採用 データ分析講座(その60)

◆ 売上分析やマーケティングのデータ分析で成果を出したいなら、OUTPUTよりもOUTCOMEにこだわれ  データを集めたけど…&he...

◆ 売上分析やマーケティングのデータ分析で成果を出したいなら、OUTPUTよりもOUTCOMEにこだわれ  データを集めたけど…&he...


既存コア技術強化のためのオープン・イノベーション  研究テーマの多様な情報源(その21)

 1.コア技術(オープン・イノベーションの対象) ◆関連解説『情報マネジメントとは』    コア技術(ある領域を対象に設定し、1...

 1.コア技術(オープン・イノベーションの対象) ◆関連解説『情報マネジメントとは』    コア技術(ある領域を対象に設定し、1...


「情報マネジメント一般」の活用事例

もっと見る
生産スピード向上と品質管理

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...


‐販路開拓に関する問題 第2回‐ 製品・技術開発力強化策の事例(その18)

 販路開拓に関する問題点、次に示す4点について、第1回として、1と2項を解説しました。今回は、第2回として、3と4項を解説します。        1....

 販路開拓に関する問題点、次に示す4点について、第1回として、1と2項を解説しました。今回は、第2回として、3と4項を解説します。        1....


中小製造業とIoTの波

 「IoT(アイオーティー)」の波が、中小製造業にどのような影響をおよぼすのか、具体的にどのような変化がこの業界に訪れるのかについて、解説します。   ...

 「IoT(アイオーティー)」の波が、中小製造業にどのような影響をおよぼすのか、具体的にどのような変化がこの業界に訪れるのかについて、解説します。   ...