ビジネスでのデータドリブンとアナリティクスとアナリシス データ分析講座(その195)

更新日

投稿日

データ分析

 

データを活用するとき、「データドリブン」や「アナリティクス」、「アナリシス」というワードをよく聞きます。違いは何でしょうか?何となく似たような感じがしますが、何となくどこか違います。今回は、「ビジネスでのデータドリブンとアナリティクスとアナリシス」というお話しをします。

【目次】

1.データドリブン
(1)継続性
(2)アナリティクス
(3)アナリシスとシンセシス
2.データドリブン再考
3.継続的改善

 

1.データドリブン

「データドリブン」というキーワードを聞いて、何を思い浮かべるでしょうか。「ドリブン」は「駆動」と訳されます。「駆動」とは、「動力を与えて動かすこと」です。その「動力」が「データ」である場合、「データドリブン」となります。

 

「データドリブン」とは、得られた「データ」をもとに次の「アクション」を起こすデータ分析・活用(データサイエンス実践)です。そう考えると、分析ツールと分析手法を駆使し問題を解決する「アナリティクス」と似たような概念になります。

 

「アナリティクス」との違いは、何でしょうか。

 

(1)継続性

先ほど、「データドリブン」とは「得られた『データ』をもとに次の『アクション』を起こすデータ分析・活用(データサイエンス実践)」であると述べました。得られた「データ」のもとに次の「アクション」を起こすと、新たな「データ」が発生します。この新たに得られた「データ」をもとに、次の「アクション」を起こします。さらに、新たな「データ」が発生します。

 

このようなループが延々と続き、データ分析・活用(データサイエンス実践)に継続性が生まれます。

 

(2)アナリティクス

「アナリティクス」の場合、継続してもいいし継続しなくても構いません。「アナリティクス」は、分析ツールと分析手法を駆使し問題が解決さえすればいいのですから、場合によっては1回実施し終了する場合もあります。「データドリブン」と「アナリティクス」の違いは、データ分析・活用(データサイエンス実践)の継続性の有無か、というとそうでもありません。「データドリブン」の中に「アナリティクス」は内包されています。

 

「データドリブン」とは「継続的に、得られた『データ』をもとに次の『アクション』を起こしていくデータ分析・活用(データサイエンス実践)」です。継続性があるので、「得られた『データ』をもとに次の『アクション』を起こしていく」が繰り返されます。

 

1回1回の「得られた『データ』をもとに次の『アクション』を起こしていくデータ分析・活用(データサイエンス実践)」が「アナリティクス」です。これは、どちらかと言うと広義の「アナリティクス」です。狭義のアナリティクスは、データ分析や数理モデル構築などまでです。

 

(3)アナリシスとシンセシス

「アナリティクス」の中で実施する、個々の分析行為が「アナリシス」です。

 

アクションを起こすために、「アナリシス」で得られた個々の分析結果や予測結果などの様々な情報を統合するのが「シンセシス」です。「アナリシス」と「シンセシス」は、「アナリティクス」の両輪です。分析結果や予測結果などを出力した後に、次のアクションが生まれないとき、「シンセシス」に問題があるケースが多いです。

 

2.データドリブン再考

言い換えると、「データドリブン」とは、「アナリティクスを実施し問題を解決し続けること」です。この「問題を解決し続けること」を1ワードで表現すると「継続的改善」(コンティニュアンス・インプルーブメント)になります。

 

要するに、データドリブンとは「データを用いた継続的な改...

データ分析

 

データを活用するとき、「データドリブン」や「アナリティクス」、「アナリシス」というワードをよく聞きます。違いは何でしょうか?何となく似たような感じがしますが、何となくどこか違います。今回は、「ビジネスでのデータドリブンとアナリティクスとアナリシス」というお話しをします。

【目次】

1.データドリブン
(1)継続性
(2)アナリティクス
(3)アナリシスとシンセシス
2.データドリブン再考
3.継続的改善

 

1.データドリブン

「データドリブン」というキーワードを聞いて、何を思い浮かべるでしょうか。「ドリブン」は「駆動」と訳されます。「駆動」とは、「動力を与えて動かすこと」です。その「動力」が「データ」である場合、「データドリブン」となります。

 

「データドリブン」とは、得られた「データ」をもとに次の「アクション」を起こすデータ分析・活用(データサイエンス実践)です。そう考えると、分析ツールと分析手法を駆使し問題を解決する「アナリティクス」と似たような概念になります。

 

「アナリティクス」との違いは、何でしょうか。

 

(1)継続性

先ほど、「データドリブン」とは「得られた『データ』をもとに次の『アクション』を起こすデータ分析・活用(データサイエンス実践)」であると述べました。得られた「データ」のもとに次の「アクション」を起こすと、新たな「データ」が発生します。この新たに得られた「データ」をもとに、次の「アクション」を起こします。さらに、新たな「データ」が発生します。

 

このようなループが延々と続き、データ分析・活用(データサイエンス実践)に継続性が生まれます。

 

(2)アナリティクス

「アナリティクス」の場合、継続してもいいし継続しなくても構いません。「アナリティクス」は、分析ツールと分析手法を駆使し問題が解決さえすればいいのですから、場合によっては1回実施し終了する場合もあります。「データドリブン」と「アナリティクス」の違いは、データ分析・活用(データサイエンス実践)の継続性の有無か、というとそうでもありません。「データドリブン」の中に「アナリティクス」は内包されています。

 

「データドリブン」とは「継続的に、得られた『データ』をもとに次の『アクション』を起こしていくデータ分析・活用(データサイエンス実践)」です。継続性があるので、「得られた『データ』をもとに次の『アクション』を起こしていく」が繰り返されます。

 

1回1回の「得られた『データ』をもとに次の『アクション』を起こしていくデータ分析・活用(データサイエンス実践)」が「アナリティクス」です。これは、どちらかと言うと広義の「アナリティクス」です。狭義のアナリティクスは、データ分析や数理モデル構築などまでです。

 

(3)アナリシスとシンセシス

「アナリティクス」の中で実施する、個々の分析行為が「アナリシス」です。

 

アクションを起こすために、「アナリシス」で得られた個々の分析結果や予測結果などの様々な情報を統合するのが「シンセシス」です。「アナリシス」と「シンセシス」は、「アナリティクス」の両輪です。分析結果や予測結果などを出力した後に、次のアクションが生まれないとき、「シンセシス」に問題があるケースが多いです。

 

2.データドリブン再考

言い換えると、「データドリブン」とは、「アナリティクスを実施し問題を解決し続けること」です。この「問題を解決し続けること」を1ワードで表現すると「継続的改善」(コンティニュアンス・インプルーブメント)になります。

 

要するに、データドリブンとは「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)を実現するデータ分析・活用(データサイエンス実践)なのです。

 

3.継続的改善

「継続的改善」(コンティニュアンス・インプルーブメント)とは、「昨日より今日」「今日より明日」といった継続的な改善活動です。

 

「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)の場合には、データを上手く用いて「昨日より今日」「今日より明日」といった継続的な改善活動を実施する、ということです。データ活用の現場で実現すべきは、この「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)です。

 

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
プロダクト・データサイエンス:データ分析講座(その321)3つのDS業務タイプ

  商品やサービスなどを開発して販売することで収益を得るビジネスモデルは非常に多いですが、例えば、車を開発しディーラー経由で販売する、クラ...

  商品やサービスなどを開発して販売することで収益を得るビジネスモデルは非常に多いですが、例えば、車を開発しディーラー経由で販売する、クラ...


データ分析・活用のアプローチとは データ分析講座(その112)

◆ なぜ今、データサイエンスが必要なのか?  データサイエンスという用語は、数十年前からありました。2000年代初期のころ、私が所属していたコンサル...

◆ なぜ今、データサイエンスが必要なのか?  データサイエンスという用語は、数十年前からありました。2000年代初期のころ、私が所属していたコンサル...


テキストマイニング技術のビジネスへの応用とその効果(その2)

   前回のその1に続いて解説します。 2. トランザクティブ・メモリー  トランザクティブ・メモリーは、1980年代半ばに米ハーバード大...

   前回のその1に続いて解説します。 2. トランザクティブ・メモリー  トランザクティブ・メモリーは、1980年代半ばに米ハーバード大...


「情報マネジメント一般」の活用事例

もっと見る
情報、常識の検証を考える

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...


人的資源マネジメント:製品開発の滞留を引き起こすファイルとは(その2)

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...